Nuklearmedizin 1984; 23(01): 15-18
DOI: 10.1055/s-0038-1624160
Originalarbeiten - Original Articles
Schattauer GmbH

A Stochastic Approach to Tracer Kinetics[*]

Eine stochastische Annäherung an die Tracerkinetik
K. Knešaurek
1   From the Clinic for Nuclear Medicine and Oncology, “Dr. M. Stojanovic” Clinical Hospital, Zagreb, Yugoslavia
,
Š. Spaventi
1   From the Clinic for Nuclear Medicine and Oncology, “Dr. M. Stojanovic” Clinical Hospital, Zagreb, Yugoslavia
› Author Affiliations
This work has been mostly done during one of the author’s (Κ. K.) stay at Hammersmith Hospital on an IAEA fellowship. We wish to thank Prof. J. S. Orr and Dr. S. Leeman for their valuable help and support during the course of this work.
Further Information

Publication History

Received: 12 September 1983

Publication Date:
10 January 2018 (online)

Summary

The single compartment well-mixed model (SCWMM) which has been used in almost all dynamic studies in nuclear medicine is, in fact, strictly accurate only in the case of a steady state obtained by means of constant administration of long-lived isotopes. That is the reason why SCWMM is not a good predictor of the behaviour of short-lived isotopes and why the distribution and transport of short- and long-lived isotopes in various situations has not yet been discussed in general terms. The aim of this paper is to do that by means of a more general stochastic approach. This more general approach takes into account the distribution and transport of tracer in the system, not requiring a hypothesis of good mixing and providing a possibility of making corrections due to decay in the case of short-lived isotopes studies.

Zusammenfassung

Das Modell eines gut durchmischten Einzelkompartments, das bisher in fast allen dynamischen Studien in der Nuklearmedizin verwendet wurde, ist nur im Falle eines Steady-state-Zustands, der durch konstante Verabreichung eines langlebigen Isotops erzielt wurde, völlig genau. Dies ist der Grund, warum dieses Modell das Verhalten kurzlebiger Isotope nicht gut Voraussagen kann und warum die Verteilung und der Transport kurz- und langlebiger Isotope in verschiedenen Situationen bis jetzt nicht in allgemeinen Begriffen diskutiert worden ist. Der Zweck dieser Arbeit ist es, dies mittels einer generelleren stochastischen Annäherung zu tun. Diese mehr generelle Annäherung nimmt auf die Verteilung und den Transport des Tracers im System Rücksicht, verlangt keine Hypothese einer guten Mischung und ergibt die Möglichkeit der Anbringung von Korrekturen für den Zerfall bei Untersuchungen mit kurzlebigen Isotopen.

* 3rd International Symposium on Radiopharmacology, Freiburg i. Br. September 1983.


 
  • References

  • 1 Alderson P. O., Douglass K. H., Mendenhall K. G., Guadiani V. A., Watson D. C., Links J. M., Wagner Jr H. N.. Deconvolution analysis in radionuclide quantitation of left-to-right cardiac shunts. J. nucl. Med. 20: 502 1979;
  • 2 Bajzer Ž., Nosil J. A simple mathematical lung model for quantitative regional ventilation measurement by use of 81mKr. Phys. Med. Biol. 22: 975 1977;
  • 3 Bajzer Ž., Nosil J. Lung ventilation model for radioactive tracer tidal breathing. Phys. Med. Biol. 25: 293 1980;
  • 4 Britton K. E., Brown N. J. G. Clinical Renography. Lloyd-Luke; London: 1971.
  • 5 Diffey B. L., Hall F. M., Corfield J. R. The 99mTc-DTPA dynamic renal scan with deconvolution analysis. J. nucl. Med. 17: 352 1976;
  • 6 Donato L., Holmes R. A., Wagner Jr H. N.. The Circulation. In: Principles of Nuclear Medicine. Wagner Jr H. N.. W. B. Saunders & Co; Philadelphia-London-Toronto: 1969.
  • 7 Erbsmann F., Struyven J., Ham H., Piepsz A. Analysis of errors and systematic biasses in the calculation of the renal retention function. In: Information Processing in Medical Imaging. (Proc. 5th Int. Conf. Nashville, 1977). Brill A. B., Price R.. ORNL/BCTIC; 524 1978.
  • 8 Fazio F., Jones T. Assessment of regional ventilation by continuous inhalation of radioactive krypton-81m. Brit. med. J. 3: 673 1975;
  • 9 Fleming J. S., Goddard B. A. A technique for the deconvolution of the renogram. Phys. Med. Biol. 19: 546 1974;
  • 10 Ham H. R., Dobbelair A., Viart P., Piepsz A., Lenaers A. Radionuclide quantitation of left-to-right cardiac shunts using deconvolution analysis. J. nucl. Med. 22: 688 1981;
  • 11 Huang S. C., Phelps M. E., Hoffman E. J., Kuhl D. E. Flow measurement with constant infusion technique. Phys. Med. Biol. 24: 1151 1979;
  • 12 Jones T., Chesler D. A., TerPogossian M. M. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Brit. J. Radiol. 49: 339 1976;
  • 13 Kaplan E., Mayron L. W. Evaluation of perfusion with the Rb-81m Kr generator. Sem. nucl. Med. 6: 163 1976;
  • 14 Kenny R. W., Ackery D. M., Fleming J. S., Goddard B. A., Grant R. W. Deconvolution analysis of the scintillation camera renogram. Brit. J. Radiol. 48: 48 1975;
  • 15 Knešaurek K., Spaventi Š. Extended three-compartment model for the transport and distribution of Hippuran. Phys. Med. Biol. 26: 231 1981;
  • 16 Knešaurek K. Dependence of distribution of short-lived tracers on decay. A non-compartmental approach. J. nucl. Med. 24: 543 1983;
  • 17 Knešaurek K., Spaventi S. What is a definition of partition coefficient in a case of washout and short-lived isotopes studies?. Phys. Med. Biol, (to be published)..
  • 18 Leeman S., Orr J. S. Mean transit time measurement from general washout curve. Phys. Med. Biol. 24: 1295 1979;
  • 19 Modell H. I., Graham M. M. Limitations of Kr-81m for quantitation of ventilation scans. J. nucl. Med. 23: 301 1982;
  • 20 Nosil J., Bajzer Ž., Spaventi S. The use of 81mKr gas for the measurement of absolute regional lung ventilation. Nucl. Med. 16: 13 1977;
  • 21 Ronald R. P., Touya J. J., Branch R., Goddard J., Brill A. B. Validation of renal transit-time calculations using compartmental models and direct measurements. In: Information Processing in Nuclear Medicine (Proc. 5th Int. Conf. Nashville, 1977). Brill A. B., Price R.. ORNL/BCTIC; 1978: 534.
  • 22 Selikson M., Eichling J. Continuous administration of short-lived isotopes for evaluating dynamic parameters. Phys. Med. Biol. 27: 1381 1982;
  • 23 Subramanyam R., Alpert N. M., Hoop B., Brownell G. L., Taveras J. M. A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O and C15O2 . J. nucl. Med. 19: 48 1978;
  • 24 Van Stekelenburg L. H. M. Hippuran transit times in the kidney: A new approach. Phys. Med. Biol. 23: 291 1978;
  • 25 Zadro M., Nosil J., Bajzer Ž., Švarc A. Mean transit time measurement from wash-in and wash-out curves. Phys. Med. Biol. 26: 1171 1981;