Osteologie 2014; 23(03): 189-194
DOI: 10.1055/s-0037-1622021
Osteoimmunologie
Schattauer GmbH

Vitamin D und Immunsystem

Vitamin D and the immune system
E. Husar-Memmer
1   Ludwig Boltzmann Institut für Osteologie am Hanusch Krankenhaus der WGKK und AUVA, Unfallkrankenhaus Meidling, 1. Medizinische Abteilung, Hanusch Krankenhaus, Wien, Österreich
,
J. Zwerina
1   Ludwig Boltzmann Institut für Osteologie am Hanusch Krankenhaus der WGKK und AUVA, Unfallkrankenhaus Meidling, 1. Medizinische Abteilung, Hanusch Krankenhaus, Wien, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 29. Juli 2014

angenommen: 05. August 2014

Publikationsdatum:
02. Januar 2018 (online)

Zusammenfassung

Vitamin D ist ein essenzieller Mitspieler im Knochenstoffwechsel und notwendig für eine physiologische Knochenmineralisation. In den vergangenen Jahren wurden aber auch wichtige Erkenntnisse über die Rolle von Vitamin D im Immunsystem gewonnen. Vitamin D kann die Entwicklung und Funktion der unspezifischen und spezifischen Abwehr beeinflussen. So fördert Vitamin D die Produktion von antimikrobiellen Peptiden wie dem Cathelicidin. Auch die T-Zell-Entwicklung kann in experimentellen Systemen durch Vitamin D signifikant beeinflusst werden. Ein Vitamin-D-Mangel wird sowohl mit Abwehrschwäche als auch Anfälligkeit für die Entwicklung von Autoimmunerkrankungen in Zusammenhang gebracht. Prospektive Studien zeigten eine Assoziation von wenig Sonnenexposition oder reduzierter Vitamin-DZufuhr und der Entwicklung von Autoimmun - erkrankungen wie der Multiplen Sklerose. Im Gegensatz zu diesen experimentellen Studien und klinischen Beobachtungen ist allerdings unklar, ob eine therapeutische Beeinflussung des Vitamin-D-Stoffwechsels positive Effekte auf die vorgenannten Erkrankungen hat oder diese sogar verhindern kann. Randomisierte kontrollierte Studien zur Prophylaxe von Atemwegsinfektionen mit Vitamin D bei gesunden Erwachsenen haben großteils negative Ergebnisse gezeigt. Ob sich eine Vitamin-D-Gabe, abgesehen von Effekten auf den Knochenstoffwechsel, positiv auf Autoimmunerkrankungen wie die rheumatoide Arthritis oder Multiple Sklerose auswirkt, ist bisher nicht ausreichend untersucht.

Summary

Vitamin D is essential for physiological mineralization of bone. In the past years, an important role for vitamin D in the immune system was suggested. Vitamin D influences innate and adaptive immunity on multiple levels. For instance, vitamin D enhances production of antimicrobial peptides such as cathelicidin, which may be important for antituberculostatic actions of vitamin D. Also, vitamin D significantly alters T cell polarization in experimental systems. Vitamin D deficiency is associated with susceptibility to respiratory infections but also development of autoimmune diseases such as rheumatoid arthritis or multiple sclerosis. Prospective observational studies showed an association of reduced sun exposure or vitamin D intake with development of autoimmune disorders. In contrast to observational studies and experimental evidence, it remains unclear whether therapy with vitamin D can actually influence the aforementioned diseases. Recent evidence does not suggest significant protection from respiratory tract infections in otherwise healthy adults upon vitamin D supplementation. Also, we do not know if vitamin D can positively influence autoimmune disorders such as rheumatoid arthritis and multiple sclerosis apart from bone metabolism.

 
  • Literatur

  • 1 Gröber U. et al. Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare. Dermatoendocrinol 2013; 05: 331-347.
  • 2 Breslau NA. Normal and abnormal regulation of 1,25-(OH)2D synthesis. Am J Med Sci 1988; 296: 417-425.
  • 3 Jones G. Metabolism and Catabolism of Vitamin D, Its Metabolites, and Clinically Relevant Analogs. In: Vitamin D – Physiology, Molecular Biology, and Clinical Applications. Holick MF. ed. Totowa, New Jersey: Humana Press; 1999: 57-84.
  • 4 Baker AR. et al. Cloning and expression of fulllength cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A 1988; 85: 3294-3298.
  • 5 Manolagas SC. et al. Interactions of 1,25-dihydroxyvitamin D3 and the immune system. Mol Cell Endocrinol 1985; 43: 113-122.
  • 6 Monkawa T. et al. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int 2000; 58: 559-568.
  • 7 Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22: 240-273.
  • 8 Wang TT. et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004; 173: 2909-2912.
  • 9 Overbergh L. et al. Regulation of 25-hydroxyvitamin d-1alpha-hydroxylase by IFN gamma in human monocytic THP1 cells. J Steroid Biochem Mol Biol. 2004 89–90: 453–455.
  • 10 Dusso A. et al. Extrarenal production of calcitriol. Semin Nephrol 1994; 14: 144-155.
  • 11 Gombart AF. et al. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2005; 19: 1067-1077.
  • 12 Liu PT. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311: 1770-1773.
  • 13 Rook GA. et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 1986; 57: 159-163.
  • 14 Sly LM. et al. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem 2001; 276: 35482-35493.
  • 15 Rockett KA. et al. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 1998; 66: 5314-5321.
  • 16 Yuk JM. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 2009; 06: 231-243.
  • 17 Martineau AR. et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 2011; 377: 242-250.
  • 18 Ralph AP. et al. L-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial. PLoS One 2013; 08: e70032.
  • 19 Tiosano D. et al. The role of vitamin D receptor in innate and adaptive immunity: a study in hereditary vitamin D-resistant rickets patients. J Clin Endocrinol Metab 2013; 98: 1685-1693.
  • 20 Fritsche J. et al. Regulation of 25-hydroxyvitamin D3–1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood 2003; 102: 3314-3316.
  • 21 Széles L. et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol 2009; 182: 2074-2083.
  • 22 Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 2000; 164: 2405-2411.
  • 23 Lyakh LA. et al. TGF-beta and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells.J Immunol. 2005; 174: 2061-2070.
  • 24 Karthaus N. et al. Vitamin D controls murine and human plasmacytoid dendritic cell function.J Invest Dermatol. 2014; 134: 1255-1264.
  • 25 Lemire JM. et al. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr 1995; 125: 1704S-1708S.
  • 26 O’Kelly J. et al. Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptorknockout mice. J Clin Invest 2002; 109: 1091-1099.
  • 27 Colin EM. et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum 2010; 62: 132-142.
  • 28 Jeffery LE. et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3.J Immunol. 2009; 183: 5458-5467.
  • 29 Camargo Jr CA. et al. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics 2012; 130: e561-e567.
  • 30 Murdoch DR. et al. Effect of vitamin D3 supplementation on upper respiratory tract infections in healthy adults: the VIDARIS randomized controlled trial. JAMA 2012; 308: 1333-1339.
  • 31 Li-Ng M. et al. A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol Infect 2009; 137: 1396-1404.
  • 32 Laaksi I. et al. Vitamin D supplementation for the prevention of acute respiratory tract infection: a randomized, double-blinded trial among young Finnish men. J Infect Dis 2010; 202: 809-814.
  • 33 Rees JR. et al. Vitamin D3 supplementation and upper respiratory tract infections in a randomized, controlled trial. Clin Infect Dis 2013; 57: 1384-1392.
  • 34 Manaseki-Holland S. et al. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial. Lancet 2012; 379: 1419-1427.
  • 35 Urashima M. et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 2010; 91: 1255-1260.
  • 36 Mao S, Huang S. Vitamin D supplementation and risk of respiratory tract infections: a meta-analysis of randomized controlled trials. Scand J Infect Dis 2013; 45 (09) 696-702.
  • 37 Bergman P. et al. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open 2012; 02: e001663.
  • 38 Lehouck A. et al. High doses of vitamin D to reduce exacerbations in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2012; 156: 105-114.
  • 39 Tetlow LC. et al. Vitamin D receptors in the rheumatoid lesion: expression by chondrocytes, macrophages, and synoviocytes. Ann Rheum Dis 1999; 58: 118-121.
  • 40 Cantorna MT. et al. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 1998; 128: 68-72.
  • 41 Zwerina K. et al. Vitamin D receptor regulates TNF-mediated arthritis. Ann Rheum Dis 2011; 70: 1122-1129.
  • 42 van Soesbergen RM. et al. Bone metabolism in rheumatoid arthritis compared with postmenopausal osteoporosis. Ann Rheum Dis 1986; 45: 149-155.
  • 43 Merlino LA. et al Iowa Women’s Health Study. Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis Rheum 2004; 50: 72-77.
  • 44 Costenbader KH. et al. Vitamin D intake and risks of systemic lupus erythematosus and rheumatoid arthritis in women. Ann Rheum Dis 2008; 67: 530-535.
  • 45 Rossini M. et al. Vitamin D deficiency in rheumatoid arthritis: prevalence, determinants and associations with disease activity and disability. Arthritis Res Ther 2010; 12: R216.
  • 46 Patel S. et al. Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis Rheum 2007; 56: 2143-2149.
  • 47 Oelzner P. et al. Relationship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif Tissue Int 1998; 62: 193-198.
  • 48 Kröger H. et al. Low serum vitamin D metabolites in women with rheumatoid arthritis. Scand J Rheumatol 1993; 22: 172-177.
  • 49 Vukusic S. et al. Regional variations in the prevalence of multiple sclerosis in French farmers. J Neurol Neurosurg Psychiatry 2007; 78: 707-709.
  • 50 van der Mei I. et al. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: case-control study. Br Med J 2003; 327: 316-317.
  • 51 Simpson Jr S. et al. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 2011; 82: 1132-1141.
  • 52 Bjørnevik K. et al. Sun exposure and multiple sclerosis risk in Norway and Italy: The EnvIMS study. Mult Scler 2014; 20: 1042-1049.
  • 53 Lucas RM. et al. Sunexposure and vitamin D are independent risk factors for CNS demyelination. Neurology 2011; 76: 540-548.
  • 54 Simpson Jr S. et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 2010; 68: 193-203.
  • 55 Runia TF. et al. Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis. Neurology 2012; 79: 261-266.
  • 56 Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest 1991; 87: 1103-1107.
  • 57 Meehan TF, DeLuca HF. CD8(+) T cells are not necessary for 1 alpha,25-dihydroxyvitamin D(3) to suppress experimental autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 2002; 99: 5557-5560.
  • 58 Joshi S. et al. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol 2011; 31: 3653-3669.
  • 59 Grishkan IV. et al. 1,25-Dihydroxyvitamin D3 selectively and reversibly impairs T helper-cell CNS localization. Proc Natl Acad Sci U S A 2013; 110: 21101-21106.
  • 60 Adzemovic MZ. et al. Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. Exp Neurol 2013; 249: 39-48.
  • 61 Kimball S. et al. Cholecalciferol plus calcium suppresses abnormal PBMC reactivity in patients with multiple sclerosis. J Clin Endocrinol Metab 2011; 96: 2826-2834.
  • 62 Stein MS. et al. A randomizedtrial of high-dose vitamin D2 in relapsing-remitting multiple sclerosis. Neurology 2011; 77: 1611-1618.
  • 63 Kampman MT. et al. Effect of vitamin D3 supplementation on relapses, disease progression, and measures of function in persons with multiple sclerosis: exploratory outcomes from a doubleblind randomised controlled trial. Mult Scler 2012; 18: 1144-1151.