Osteologie 2014; 23(02): 97-99
DOI: 10.1055/s-0037-1620048
Osteoporose und Diabetes mellitus
Schattauer GmbH

Kortikale Porosität bei Diabetes mellitus Typ 2

Cortical porosity in type 2 diabetes mellitus
J. M. Patsch
1   Universitätsklinik für Radiodiagnostik, Medizinische Universität Wien, Wien, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 17. März 2014

angenommen: 19. März 2014

Publikationsdatum:
02. Januar 2018 (online)

Zusammenfassung

Die diabetische Osteopathie ist eine komplexe metabolische Knochenerkrankung mit oft normaler Knochenmineraldichte, jedoch einer paradoxen Frakturanfälligkeit. Neben niedrigem Knochenumsatz, pathologischen Knochenmatrixveränderungen, Myopathie, Neuropathie und anderen diabetischen Sekundärkomplikationen dürfte der kortikalen Porosität bei Typ-2-Diabetes mellitus eine besondere pathophysiologische Bedeutung zukommen. Während postmenopausale Typ-2-Diabetikerinnen ohne stattgehabte Frakturen einen dicken und besonders aporösen Kortex aufwiesen, war bei Frauen mit prävalenten Insuffizienzfrakturen ein hochporöser kortikaler Phäntotyp allfällig. Die biomechanische Bedeutung, zeitliche Entwicklung, morphologische Dynamik und mögliche therapeutische Modulierbarkeit dieser Ergebnisse wird in Zukunft noch im Detail zu erforschen sein.

Summary

Typ 2 diabetic bone disease is a complex skeletal condition characterized by normal or even high bone mineral density (BMD). At the same time, patients with type 2 diabetes mellitus suffer from a high susceptibility to fragility fractures. Low bone turnover, pathologic changes of bone matrix, myopathy, neuropathy and other secondary disease complications have an important pathophy-siologic impact on diabetic bone quality. While postmenopausal women with type 2 diabetes without prevalent fractures have been shown to display thick and relatively aporous cortices, the opposite is true for diabetic women with prevalent fractures. These patients have been shown to exhibit overt cortical porosity exceeding the normal reference range. The biomechanical relevance and spatiotemporal dynamics of this finding and potential therapeutic implications for patient care need to be determined in the future.

 
  • Literatur

  • 1 Zebaze RM, Ghasem-Zadeh A, Bohte A. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 2010; 375 9727 1729-1736.
  • 2 Holzer G, von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2009; 24 (03) 468-474.
  • 3 Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. The Journal of clinical endocrinology and metabolism 2005; 90 (12) 6508-6515.
  • 4 Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Annals of the New York Academy of Sciences 2011; 1240 (01) 77-87.
  • 5 Nickolas TL, Shirazian S, Shane E. High-resolution computed tomography imaging: a virtual bone biopsy. Kidney Int 2010; 77 (11) 1046.
  • 6 Nishiyama KK, Macdonald HM, Buie HR. et al. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. Journal of bone and mineral research 2010; 25 (04) 882-890.
  • 7 Burghardt AJ, Buie HR, Laib A. et al. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 2010; 47 (03) 519-528.
  • 8 Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 2013; 54 (01) 8-20.
  • 9 Valentinitsch A, Patsch JM, Deutschmann J. et al. Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. Bone 2012; 51: 480-487.
  • 10 Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia 1988; 31 (12) 892-895.
  • 11 Yamagishi SI. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Current drug targets 2011; 12: 2096-2102.
  • 12 Garcia-Martin A, Rozas-Moreno P, Reyes-Garcia R. et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. The Journal of clinical endocrinology and metabolism 2012; 97 (01) 234-241.
  • 13 de Liefde II, van der Klift M, de Laet CE. et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporosis international 2005; 16 (12) 1713-1720.
  • 14 Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. American journal of epidemiology 2007; 166 (05) 495-505.
  • 15 Burghardt AJ, Issever AS, Schwartz AV. et al. Highresolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95 (11) 5045-5055.
  • 16 Patsch JM, Burghardt AJ, Yap SP. et al. Increased cortical porosity in type-2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2013; 28 (02) 313-324.
  • 17 Shu A, Yin MT, Stein E. et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 2012; 23 (02) 635-641.
  • 18 Farr JN, Drake MT, Amin S. et al. In Vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 2014; 29 (04) 787-795.
  • 19 Link TM. In vivo quantification of cortical bone water with ultrashort echo-time MR imaging: a new parameter to measure bone quality?. Radiology 2008; 248 (03) 705-706.