Subscribe to RSS
DOI: 10.1055/s-0037-1619945
Mechanical influences on endothelial cell network formation in vitro
Mechanische Einflüsse auf die Netzwerkbildung von Endothelzellen in vitro This study was supported by the AO Foundation (Davos, Switzerland - Collaborative AO Research Center Berlin and project S-08–87K) and the BMBF-funded Berlin-Brandenburg Center for Regenerative Therapies (Berlin, Germany). None of the authors have any conflicts of interest relating to this work. The authors wish to thank Liliya Schumann and Marzena Princ for their support in cell culture and Sven Geißler and Doreen Janke for editorial assistance.Publication History
received:
23 July 2010
accepted:
27 July 2010
Publication Date:
30 December 2017 (online)

Summary
While both the restoration of the blood supply and an appropriate local mechanical environment are critical for uneventful bone healing, their influence on each other remains unclear. Human bone fracture haematomas (< 72 h post-trauma) were cultivated for 3 days in fibrin matrices, with or without cyclic compression. Conditioned medium from these cultures enhanced the formation of vessel-like networks by HMEC-1 cells, and mechanical loading further elevated it, without affecting the cells’ metabolic activity. While haematomas released the angiogenesis-regulators, VEGF and TGF-β1, their concentrations were not affected by mechanical loading. However, direct cyclic stretching of the HMEC-1 cells decreased network formation. The appearance of the networks and a trend towards elevated VEGF under strain suggested physical disruption rather than biochemical modulation as the responsible mechanism. Thus, early fracture haematomas and their mechanical loading increase the paracrine stimulation of endothelial organisation in vitro, but direct periodic strains may disrupt or impair vessel assembly in otherwise favourable conditions.
Zusammenfassung
Eine komplikationslose Knochenheilung ist sowohl von der Wiederherstellung der Blutversorgung als auch einer geeigneten mechanischen Umgebung abhängig. Die gegenseitige Wechselwirkung beider Parameter ist bisher weitgehend unbekannt. Humane Frakturhämatome (< 72 h nach dem Trauma) wurden für drei Tage in einer Fibrin-Matrix mit/ohne zyklische/r Kompression kultiviert. Das konditionierte Medium dieser Kulturen stimulierte parakrin die Bildung gefäßähnlicher Netzwerke durch HMEC-1-Zellen. Dieser Effekt konnte durch mechanische Stimulation verstärkt werden, ohne die metabolische Aktivität der Zellen zu beeinträchtigen. Die Hämatome sezernierten angiogeneseregulierende Wachstumsfaktoren, VEGF und TGF-β1, deren Konzentration jedoch nicht mechanisch reguliert wurde. Direkte zyklische Dehnung von HMEC-1-Zellen reduzierte jedoch die Netzwerkbildung. Die Morphologie der Netzwerke und die Tendenz zu erhöhter VEGF-Sekretion nach mechanischer Belastung sprechen eher für eine physische als eine biochemische Modulation als möglichen Grund für die reduzierte Netzwerkbildung.
* Both authors contributed equally to this work
-
References
- 1 Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010; 21 (02) 85-93.
- 2 Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 2003; 06 (01) 1-14.
- 3 Calori GM, Albisetti W, Agus A. et al. Risk factors contributing to fracture non-unions. Injury 2007; 38 (Suppl. 02) S11-S18.
- 4 Claes L, Wolf S, Augat P. Mechanische Einflüsse auf die Callusheilung. Chirurg 2000; 71 (09) 989.
- 5 Claes L, Eckert-Hubner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop Res 2002; 20 (05) 1099-1105.
- 6 Claes LE, Heigele CA, Neidlinger-Wilke C. et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 1998; (355S): S132-S147.
- 7 da Silva LMeirelles, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008; 26 (09) 2287-2299.
- 8 Freeman MR, Schneck FX, Gagnon ML. et al. Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 1995; 55 (18) 4140-4145.
- 9 Geiger F, Bertram H, Berger I. et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 2005; 20 (11) 2028-2035.
- 10 Ghosh K, Thodeti CK, Dudley AC. et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U.S.A 2008; 105 (32) 11305-11310.
- 11 Glowacki J. Angiogenesis in fracture repair. Clin Orthop Relat Res 1998; 355S: S82-S89.
- 12 Groothuis A, Duda GN, Wilson CJ. et al. Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: involvement of VEGF mechano-regulation. Bone 2010; 47 (02) 438-444.
- 13 Kasper G, Dankert N, Tuischer J. et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 2007; 25 (04) 903-910.
- 14 Kasper G, Glaeser JD, Geissler S. et al. Matrix Metalloprotease Activity is an Essential Link Between Mechanical Stimulus and Mesenchymal Stem Cell Behaviour. Stem Cells 2007; 25: 1985-1994.
- 15 Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 1988; 107 (04) 1589-1598.
- 16 Lienau J, Schell H, Duda GN. et al. Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res 2005; 23 (03) 639-645.
- 17 Lienau J, Schmidt-Bleek K, Peters A. et al. Differential regulation of blood vessel formation between standard and delayed bone healing. J Orthop Res 2009; 27 (09) 1133-1140.
- 18 Matziolis G, Tuischer J, Kasper G. et al. Simulation of cell differentiation in fracture healing: mechanically loaded composite scaffolds in a novel bioreactor system. Tissue Eng 2006; 12 (1–2): 201-208.
- 19 McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res 2009; 27 (08) 1033-1042.
- 20 Morrow D, Cullen JP, Cahill PA, Redmond EM. Cyclic Strain Regulates the Notch/CBF-1 Signaling Pathway in Endothelial Cells: Role in Angiogenic Activity. Arterioscler Thromb Vasc Biol 2007; 27 (06) 1289-1296.
- 21 Myoken Y, Kan M, Sato GH. et al. Bifunctional effects of transforming growth factor-beta (TGFbeta) on endothelial cell growth correlate with phenotypes of TGF-beta binding sites. Exp Cell Res 1990; 191 (02) 299-304.
- 22 Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol 2004; 14 (02) 86-93.
- 23 Pietramaggiori G, Liu P, Scherer SS. et al. Tensile forces stimulate vascular remodeling and epidermal cell proliferation in living skin. Ann Surg 2007; 246 (05) 896-902.
- 24 Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res 1974; 105: 34-81.
- 25 Ryaby JT, Sheller MR, Levine BP. et al. Thrombin Peptide TP508 Stimulates Cellular Events Leading to Angiogenesis, Revascularization, and Repair of Dermal and Musculoskeletal Tissues. J Bone Joint Surg Am 2006; 88 (03) 132-139.
- 26 Salani D, Taraboletti G, Rosano L. et al. Endothelin-1 Induces an Angiogenic Phenotype in Cultured Endothelial Cells and Stimulates Neovascularization In Vivo. Am J Pathol 2000; 157 (05) 1703-1711.
- 27 Sarmiento A, Latta LL, Tarr RR. The effects of function in fracture healing and stability. Instr Course Lect 1984; 33: 83-106.
- 28 Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: The cellular picture. Semin. Cell Dev Biol 2008; 19 (05) 459-466.
- 29 Schmidt-Bleek K, Schell H, Kolar P. et al. Cellular composition of the initial fracture hematoma compared to a muscle hematoma: a study in sheep. J Orthop Res 2009; 27 (09) 1147-1151.
- 30 Stepanova OI, Krylov AV, Lioudyno VI, Kisseleva EP. Gene expression for VEGF-A, VEGF-C, and their receptors in murine lymphocytes and macrophages. Biochemistry (Mosc) 2007; 72 (11) 1194-1198.
- 31 Street J, Winter D, Wang JH. et al. Is human fracture hematoma inherently angiogenic?. Clin Orthop Relat Res 2000; 378: 224-237.
- 32 Street J, Bao M, deGuzman L. et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U.S.A 2002; 99 (15) 9656-9661.
- 33 Strube P, Mehta M, Putzier M. et al. A new device to control mechanical environment in bone defect healing in rats. J Biomech 2008; 41 (12) 2696-2702.
- 34 Von Offenberg NSweeney, Cummins PM. et al. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun 2005; 329 (02) 573-582.
- 35 Wang J, Jiao H, Stewart TL. et al. Increased TGFbeta-producing CD4+ T lymphocytes in postburn patients and their potential interaction with dermal fibroblasts in hypertrophic scarring. Wound Repair Regen 2007; 15 (04) 530-539.
- 36 Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 2009; 78: 358-363.
- 37 Yung YC, Chae J, Buehler MJ. et al. Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. Proc Natl Acad Sci U.S.A 2009; 106 (36) 15279-15284.
- 38 Zheng W, Seftor EA, Meininger CJ. et al. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol 2001; 280 (02) H909-H917.