Hamostaseologie 2015; 35(S 01): S36-S42
DOI: 10.1055/s-0037-1619821
Original article
Schattauer GmbH

Large deletions play a minor but essential role in congenital coagulation factor VII and X deficiencies

Große Deletionen spielen eine zahlenmäßig untergeordnete aber im Einzelfall wesentliche Rolle beim hereditären Faktor-VII- und -X-Mangel
M. Rath
1   Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Germany
,
J. Najm
1   Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Germany
,
H. Sirb
2   Department of Pediatrics, DRK Hospital Lichtenstein, Germany
,
K. Kentouche
3   Department of Pediatric Hematology and Oncology, University Hospital Jena, Germany
,
A. Dufke
4   Institute of Medical Genetics and Applied Genomics, University of Tübingen, Germany
,
S. Pauli
5   Institute of Human Genetics, University Medical Center Göttingen, Germany
,
K. Hackmann
6   Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Germany
,
T. Liehr
7   Institute of Human Genetics, University Hospital Jena, Germany
,
C. A. Hübner
7   Institute of Human Genetics, University Hospital Jena, Germany
,
U. Felbor
1   Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Germany
,
Kompetenznetzwerk Hämorrhagische Diathesen Ost (KHDO) › Author Affiliations
Further Information

Publication History

received: 30 January 2015

accepted in revised form: 16 October 2015

Publication Date:
28 December 2017 (online)

Summary

Congenital factor VII (FVII) and factor X (FX) deficiencies belong to the group of rare bleeding disorders which may occur in separate or combined forms since both the F7 and F10 genes are located in close proximity on the distal long arm of chromosome 13 (13q34). We here present data of 192 consecutive index cases with FVII and/or FX deficiency. 10 novel and 53 recurrent sequence alterations were identified in the F7 gene and 5 novel as well as 11 recurrent in the F10 gene including one homozygous 4.35 kb deletion within F7 (c.64+430_131–6delins - TCGTAA) and three large heterozygous deletions involving both the F7 and F10 genes. One of the latter proved to be cytogenetically visible as a chromosome 13q34 deletion and associated with agenesis of the corpus callosum and psychomotor retardation.

Conclusions

Large deletions play a minor but essential role in the mutational spectrum of the F7 and F10 genes. Copy number analyses (e. g. MLPA) should be considered if sequencing cannot clarify the underlying reason of an observed coagulopathy. Of note, in cases of combined FVII/FX deficiency, a deletion of the two contiguous genes might be part of a larger chromosomal rearrangement.

Zusammenfassung

Der angeborene Faktor-VII-Mangel gehört wie der Faktor-X-Mangel zu den seltenen Gerinnungsstörungen. Sie können isoliert oder kombiniert vorkommen, weil die F7- und F10-Gene auf Chromosom 13 gekoppelt vorliegen. Wir berichten über die molekulargenetische Diagnostik von 192 Index-Patienten mit FVIIund/ oder FX-Mangel. 10 neue und 53 bekannte Veränderungen im F7-Gen sowie 5 neue und 11 bekannte Sequenzveränderungen im F10-Gen konnten identifiziert werden, darunter eine homozygote 4.35 kb große Deletion innerhalb des F7-Gens (c.64+430_131–6delinsTCGTAA) und drei heterozygote Deletionen der F7- und F10-Gene. Eine von diesen fand sich bei einer entwicklungsverzögerten Patientin mit Agenesie des Corpus callosum und war in der konventionellen Chromosomenanalyse sichtbar als 13q34-Deletion.

Schlussfolgerungen

Große F7- und F10-Gendeletionen spielen folglich im Einzelfall eine wichtige Rolle. Kopienzahlanalysen (z. B. MLPA) sind sinnvoll, wenn durch die Sequenzierung keine Erklärung für den beobachteten FVII- und/oder FX-Mangel gefunden wird. Auch kann der Nachweis einer Deletion der beiden benachbarten F7-und F10-Gene bei einem kombinierten Mangel ein Hinweis auf ein größeres chromosomales Rearrangement sein.

 
  • References

  • 1 Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-518.
  • 2 Perry DJ. Factor VII deficiency. Blood Coagul Fibrinolysis 2003; 14 (Suppl. 01) S47-S54.
  • 3 Brown DL, Kouides PA. Diagnosis and treatment of inherited factor X deficiency. Haemophilia 2008; 14: 1176-1182.
  • 4 Perry DJ. Factor VII Deficiency. Br J Haematol 2002; 118: 689-700.
  • 5 Stenson PD, Mort M, Ball EV. et al. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 2014; 133: 1-9.
  • 6 Beroud C, Hamroun D, Collod-Beroud G. et al. UMD (Universal Mutation Database): 2005 update. Hum Mutat 2005; 26: 184-191.
  • 7 Bolton-Maggs PH. The rare inherited coagulation disorders. Pediatr Blood Cancer 2013; 60 (Suppl. 01) S37-40.
  • 8 Mariani G, Bernardi F. Factor VII deficiency. Semin Thromb Hemost 2009; 35: 400-406.
  • 9 Herrmann FH, Wulff K, Auerswald G. et al. Factor VII deficiency: clinical manifestation of 717 subjects from Europe and Latin America with mutations in the factor 7 gene. Haemophilia 2009; 15: 267-280.
  • 10 Herrmann FH, Auerswald G, Ruiz-Saez A. et al. Factor X deficiency: clinical manifestation of 102 subjects from Europe and Latin America with mutations in the factor 10 gene. Haemophilia 2006; 12: 479-489.
  • 11 Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 04: 1073-1081.
  • 12 Adzhubei IA, Schmidt S, Peshkin L. et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 07: 248-249.
  • 13 Schwarz JM, Cooper DN, Schuelke M. et al. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11: 361-362.
  • 14 Pinotti M, Toso R, Redaelli R. et al. Molecular mechanisms of FVII deficiency: expression of mutations clustered in the IVS7 donor splice site of factor VII gene. Blood 1998; 92: 1646-1651.
  • 15 Tan CW, Najm J, Morel-Kopp MC. et al. Severe FX deficiency caused by a previously unidentified 4-bp deletion compound heterozygous with a large deletion involving FVII and FX genes. Haemophilia 2012; 18: e55-58.
  • 16 Witters I, Chabchoub E, Vermeesch JR. et al. Submicroscopic distal deletion of the long arm of chromosome 13(13q34) with corpus callosum agenesis. Am J Med Genet A 2009; 149a: 1834-1836.
  • 17 Pavlova A, Preisler B, Driesen J. et al. Congenital combined deficiency of coagulation factors VII and X--different genetic mechanisms. Haemophilia 2015; 21: 386-391.
  • 18 Giansily-Blaizot M, Thorel D, Khau Van Kien P. et al. Characterisation of a large complex intragenic re-arrangement in the FVII gene (F7) avoiding misdiagnosis in inherited factor VII deficiency. Br J Haematol 2007; 138: 359-365.
  • 19 Laurie AD, Bell JA. Severe FX deficiency caused by a homozygous double deletion involving F10 and PROZ genes. Haemophilia 2013; 19: e361-364.
  • 20 Bernardi F, Marchetti G, Patracchini P. et al. Partial gene deletion in a family with factor X deficiency. Blood 1989; 73: 2123-2127.
  • 21 Girolami A, Ruzzon E, Tezza F. et al. Congenital FX deficiency combined with other clotting defects or with other abnormalities: a critical evaluation of the literature. Haemophilia 2008; 14: 323-328.
  • 22 Hewson MP, Carter JM. Severe congenital Factor VII deficiency associated with the 13q deletion syndrome. Am J Hematol 2002; 71: 232-233.
  • 23 Pfeiffer RA, Ott R, Gilgenkrantz S. et al. Deficiency of coagulation factors VII and X associated with deletion of a chromosome 13 (q34). Evidence from two cases with 46, XY, t(13;Y)(q11;q34). Hum Genet 1982; 62: 358-360.
  • 24 Chilcott JL, Russell G, Mumford AD. Combined deficiency of factors VII and X: clinical description of two cases and management of spinal surgery. Haemophilia 2006; 12: 555-558.
  • 25 Pezeshkpoor B, Pavlova A, Oldenburg J. et al. F8 genetic analysis strategies when standard approaches fail. Hämostaseologie 2014; 34: 167-173.
  • 26 Inaba H, Koyama T, Shinozawa K. et al. Identification and characterization of an adenine to guanine transition within intron 10 of the factor VIII gene as a causative mutation in a patient with mild haemophilia A. Haemophilia 2013; 19: 100-105.
  • 27 Castaman G, Giacomelli SH, Mancuso ME. et al. Deep intronic variations may cause mild hemophilia A. J Thromb Haemost 2011; 09: 1541-1548.
  • 28 Bach JE, Wolf B, Oldenburg J. et al. Identification of deep intronic variants in 15 haemophilia A patients by next generation sequencing of the whole factor VIII gene. Thromb Haemost 2015; 114: 757-767.
  • 29 Castoldi E, Duckers C, Radu C. et al. Homozygous F5 deep-intronic splicing mutation resulting in severe factor V deficiency and undetectable thrombin generation in platelet-rich plasma. J Thromb Haemost 2011; 09: 959-968.