Reduktionsdiäten und Gewichtsverlust bewirken eine Drosselung des zellulären Energieverbrauchs; diese wird als Adaptive Thermogenese (AT) bezeichnet. Bei kontrollierter Kalorienrestriktion erklärt die AT anteilig die nichtlineare Gewichtsabnahme. Vice versa begünstigt ein niedriger Energieverbrauch die Gewichtszunahme in der Ernährungstherapie von Patientinnen mit Anorexia nervosa. Das Ausmaß der AT beträgt etwa 100 kcal/Tag. Die AT ist reproduzierbar, die inter-individuelle Varianz der Stoffwechselanpassung ist allerdings hoch, während Gewichtsreduktion ist sie bei bis zu 60 % der Menschen nachweisbar. Die AT ist unabhängig von der Strategie der Gewichtsabnahme und innerhalb von drei Tagen Kalorienrestriktion messbar, während einer Diät und bei nachhaltiger Gewichtsreduktion bleibt sie erhalten. Nach Gewichtszunahme ist die AT jedoch innerhalb von zwei Wochen reversibel. Der Abfall der Insulinsekretion und die in “frühen” Stadien der Reduktionsdiät durch Mobilisation der hepatischen Glykogenspeicher erklärte negative Flüssigkeitsbilanz sind zur AT assoziiert. Demgegenüber zeigen die bei Gewichtsabnahme reduzierten Plasmaspiegel von Leptin und Triiodothyronin sowie die niedrige Aktivität des sympathischen Nervensystems eine Beziehung zum Erhalt des reduzierten Körpergewichts, nicht aber zur Regulation der Adaptiven Thermogenese.
Summary
Caloric restriction (CR) and weight loss result in a decrease in cellular energy expenditure, i.e. the so-called adaptive thermogenesis (AT). During controlled CR AT adds to explain the non-linear weight loss. Vice versa AT may add to weight gain in feeding underweight patients with anorexia nervosa. AT is about 100 kcal/d, it is reproducible but the interindividual variance is high. During CR AT becomes measurable within three days and can be detected in up to 60 % of subjects. AT is independent of the weight loss strategy. AT persisted after stabilization of reduced body weight. With re-feeding AT is reversible within two weeks. During CR AT is associated with decreases in insulin secretion and negative fluid balance due to mobilization of hepatic glycogen. Negative energy balance associated decreases in plasma concentrations of leptin and triiodothyronine as well as reduced activity of the sympathetic nervous system reflect maintenance of reduced body weight rather than regulation of AT.
Energy balance -
energy expenditure -
body composition -
sympathetic nervous system -
thyroid hormones -
leptin
Literatur
1
Bosy-Westphal A,
Kossel E,
Goele K.
et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr 2009; 90: 993-1001.
3
Bosy-Westphal A,
Schautz B,
Lagerpusch M.
et al. Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int J Obes 2013; 37: 1371-1377.
4
Bosy-Westphal A,
Kahlhöfer J.
et al. Deep body composition phenotyping during weight cycling: relevance to metabolic efficiency and metabolic risk. Obes Rev 2015; 16 Suppl 1: 36-44.
7
Dulloo AG 1,
Jacquet J,
Girardier L.
Autoregulation of body composition during weight recovery in human: the Minnesota Experiment revisited. Int J Obes 1996; 20: 393-405.
9
Dulloo AG,
Jacquet J,
Montani J-P,
Schutz Y.
Adaptive thermogenesis in human body weight regulation: more a concept than a measurable entity?. Obes rev 2012; 13 Suppl 2: 105-121.
10
Goele K,
Bosy-Westphal A,
Rumcker B.
et al. Influence of changes in body composition and adaptive thermogenesis on the difference between measured and predicted weight loss in obese women. Obes Facts 2009; 02: 105-109.
11
Haas V,
Onur S,
Paul T.
et al. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am J Clin Nutr 2005; 81: 889-896.
13
Hopkins M,
Gibbons C.
et al. The adaptive metabolic response to exercise-induced weight loss influences both energy expenditure and energy intake. Eur J Clin Nutr 2014; 68: 581-586.
15
Knuth ND,
Johannsen DL,
Tamboli RA.
et al. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity. 2014 online publ 19 Sep, DOI: 10.1002/oby.20900.
21
Müller MJ,
Wang Z,
Heymsfield SB.
et al. Advances in the understanding of specific metabolic rates of major organs and tissues in humans. Curr Opin Clin Nutr Metab Care 2013; 16: 501-508.
22
Müller MJ,
Enderle J.
et al. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr 2015; 102: 807-819.
23
Pourhassan M,
Glüer C-C,
Bosy-Westphal A.
et al. Effect of Different Degrees of Weight Loss on Detailed Body Composition and Insulin Resistance. 37th ESPEN, Lissabon, 2015, abstr. SUN-LB033.
24
Prentice AM,
Hennig BJ,
Fulford AJ.
Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release?. Int J Obes 2008; 32: 1607-1610.
25
Rosenbaum M,
Goldsmith R.
et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115: 3579-3586.
26
Rosenbaum M,
Hirsch J,
Gallagher DA,
Leibel R.
Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008; 88: 906-912.
28
Schwartz A,
Kuk JL,
Lamothe G,
Doucet E.
Greater than predicted decrease in resting energy expenditure and weight loss: results from a systematic review. Obesity 2012; 20: 2307-2310.
29
Siervo M,
Faber P,
Lara J.
et al. Imposed extent of weight loss in obese men and adaptive changes in resting and total energy expenditure. Metabolism 2015; 64: 896-904.
31
Tremblay A,
Royer M-M,
Chaput J-P,
Doucet E.
Adaptive thermogenesis can make the difference in the ability of obese individuals to lose body weight. Int J Obes 2013; 37: 759-764.
34
Weyer C,
Vozarova B,
Ravussin E,
Tataranni PA.
Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. Int J Obes 2001; 25: 593-600.