CC BY-NC-ND 4.0 · Rev Bras Ginecol Obstet 2018; 40(02): 079-085
DOI: 10.1055/s-0037-1618597
Original Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Immunohistochemical WWOX Expression and Association with Angiogenesis, p53 Expression, Cell Proliferation and Clinicopathological Parameters in Cervical Cancer

Avaliação da expressão do gene WWOX por avaliação imunohistoquímica, sua associação com marcador de angiogênese, expressão do p53, proliferação celular e parâmetros clinicopatológicos no câncer de colo uterino
Mariana Ataydes Leite Seabra
1   Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
,
Eduardo Batista Cândido
1   Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
,
Paula Vieira Teixeira Vidigal
1   Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
,
Rivia Mara Lamaita
1   Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
,
Angélica Nogueira Rodrigues
1   Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
,
Agnaldo Lopes da Silva Filho
1   Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
› Author Affiliations
Further Information

Publication History

03 August 2017

01 December 2017

Publication Date:
08 January 2018 (online)

Abstract

Objective The current study evaluated the expression of WW domain-containing oxidoreductase (WWOX), its association with clinicopathological features and with p53, Ki-67 (cell proliferation) and CD31 (angiogenesis) expression in patients with invasive cervical squamous cell carcinoma (ICSCC). To the best of our knowledge, no other study has evaluated this association.

Methods Women with IB stage-ICSCC (n = 20) and women with uterine leiomyoma (n = 20) were prospectively evaluated. Patients with ICSCC were submitted to type B-C1 radical hysterectomy and pelvic lymphadenectomy. Patients in the control group underwent vaginal hysterectomy. Tissue samples were stained with hematoxylin and eosin for histological evaluation and protein expression was detected by immunohistochemistry studies.

Results The WWOX expression was significantly lower in the tumor compared with the expression in the benign cervix (p = 0.019). The WWOX expression was inversely associated with the CD31 expression in the tumor samples (p = 0.018). There was no association between the WWOX expression with the p53 expression (p = 0.464) or the Ki-67 expression (p = 0.360) in the samples of invasive carcinoma of the cervix. There was no association between the WWOX expression and tumor size (p = 0.156), grade of differentiation (p = 0.914), presence of lymphatic vascular invasion (p = 0.155), parametrium involvement (p = 0.421) or pelvic lymph node metastasis (p = 0.310) in ICSCC tissue samples.

Conclusion The results suggested that WWOX may be involved in ICSCC carcinogenesis, and this marker was associated with tumor angiogenesis.

Resumo

Objetivo O presente estudo avaliou a expressão do WWOX, sua associação com características clinicopatológicas e com a expressão do p53, ki-67 (proliferação celular) e CD31 (angiogênese) em pacientes com carcinoma invasivo de células escamosas do colo uterino, ou simplesmente câncer do colo uterino (CCE).

Métodos Foram avaliadas prospectivamente pacientes com CCE no estágio IB (n = 20) e mulheres com mioma uterino, no grupo controle (n = 20). As pacientes com CCE foram submetidas à histerectomia radical e à linfadenectomia pélvica do tipo B-C1. As mulheres no grupo-controle foram submetidas à histerectomia vaginal. As amostras de tecido foram coradas com hematoxilina e eosina para avaliação histológica e a expressão das proteínas foi detectada por imuno-histoquímico.

Resultados A expressão do WWOX foi significativamente menor no tumor quando comparada com sua expressão no colo do útero benigno (p = 0,019). A expressão tumoral de CD31 foi inversamente associada à expressão de WWOX (p = 0,018). Sua expressão não foi associada à expressão tumoral de p53 e Ki-67 em pacientes com CCE (p = 0,464 e p = 0,360, respectivamente). Não houve associação entre a expressão de WWOX e o tamanho do tumor (p = 0,156), grau de diferenciação (p = 0,914), presença de invasão vascular linfática (p = 0,155), comprometimento do paramétrio (p = 0,421) ou metástase dos linfonodos pélvicos (p = 0,310) em pacientes com CCE.

Conclusão Os resultados sugeriram que o WWOX pode estar envolvido na carcinogênese do CICECU e esse marcador foi associado à angiogênese tumoral.

 
  • References

  • 1 Waggoner SE. Cervical cancer. Lancet 2003; 361 (9376): 2217-2225 . Doi: 10.1016/S0140-6736(03)13778-6
  • 2 Parkin DM, Ferlay J, Curado MP. , et al. Fifty years of cancer incidence: CI5 I-IX. Int J Cancer 2010; 127 (12) 2918-2927 . Doi: 10.1002/ijc.25517
  • 3 Ministério da Saúde. Instituto Nacional de Câncer José de Alencar Gomes da Silva. Estimativa 2016: Incidência de Câncer no Brasil . Rio de Janeiro: INCA; 2016. http://www.inca.gov.br/estimativa/2016/estimativa-2016-v11.pdf . Accessed May 15, 2017
  • 4 Spriggs AI, Boddington MM. Progression and regression of cervical lesions. Review of smears from women followed without initial biopsy or treatment. J Clin Pathol 1980; 33 (06) 517-522 . Doi: 10.1136/jcp.33.6.517
  • 5 Stensen S, Kjaer SK, Jensen SM. , et al. Factors associated with type-specific persistence of high-risk human papillomavirus infection: A population-based study. Int J Cancer 2016; 138 (02) 361-368 . Doi: 10.1002/ijc.29719
  • 6 Silva-Filho AL, Traiman P, Triginelli SA. , et al. Expression of p53, Ki-67, and CD31 in the vaginal margins of radical hysterectomy in patients with stage IB carcinoma of the cervix. Gynecol Oncol 2004; 95 (03) 646-654 . Doi: 10.1016/j.ygyno.2004.07.059
  • 7 Burger EA, Kim JJ, Sy S, Castle PE. Age of acquiring causal human papillomavirus (HPV) infections: leveraging simulation models to explore the natural history of HPV-induced cervical cancer. Clin Infect Dis 2017; 65 (06) 893-899 . Doi: 10.1093/cid/cix475
  • 8 Giarnieri E, Zanesi N, Bottoni A. , et al. Oncosuppressor proteins of fragile sites are reduced in cervical cancer. Cancer Lett 2010; 289 (01) 40-45 . Doi: 10.1016/j.canlet.2009.07.017
  • 9 Ratovitski EA. Anticancer natural compounds as epigenetic modulators of gene expression. Curr Genomics 2017; 18 (02) 175-205 . Doi: 10.2174/1389202917666160803165229
  • 10 Pavel AB, Sonkin D, Reddy A. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity. BMC Syst Biol 2016; 10: 16 . Doi: 10.1186/s12918-016-0260-9
  • 11 Del Mare S, Husanie H, Iancu O. , et al. WWOX and p53 dysregulation synergize to drive the development of osteosarcoma. Cancer Res 2016; 76 (20) 6107-6117 . Doi: 10.1158/0008-5472.CAN-16-0621
  • 12 Iliopoulos D, Guler G, Han SY. , et al. Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene 2005; 24 (09) 1625-1633 . Doi: 10.1038/sj.onc.1208398
  • 13 Paige AJ, Zucknick M, Janczar S. , et al. WWOX tumour suppressor gene polymorphisms and ovarian cancer pathology and prognosis. Eur J Cancer 2010; 46 (04) 818-825 . Doi: 10.1016/j.ejca.2009.12.021
  • 14 Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 2000; 60 (08) 2140-2145
  • 15 Hezova R, Ehrmann J, Kolar Z. WWOX, a new potential tumor suppressor gene. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007; 151 (01) 11-15
  • 16 Kuroki T, Yendamuri S, Trapasso F. , et al. The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res 2004; 10 (07) 2459-2465 . Doi: 10.1158/1078-0432.CCR-03-0096
  • 17 Karras JR, Schrock MS, Batar B, Huebner K. Fragile genes that are frequently altered in cancer: players not passengers. Cytogenet Genome Res 2016; 150 (3-4): 208-216 . Doi: 10.1159/000455753
  • 18 Nunez MI, Rosen DG, Ludes-Meyers JH. , et al. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome. BMC Cancer 2005; 5: 64 . Doi: 10.1186/1471-2407-5-64
  • 19 Gao G, Smith DI. Very large common fragile site genes and their potential role in cancer development. Cell Mol Life Sci 2014; 71 (23) 4601-4615 . Doi: 10.1007/s00018-014-1753-6
  • 20 Zhu B, Wang D, Zhang Q, Wu S, Yu L, Tao Y. [Expressions of WWOX and CD133 in colorectal cancer and their clinical significance]. Nan Fang Yi Ke Da Xue Xue Bao 2015; 35 (11) 1586-1590
  • 21 Salah Z, Aqeilan R, Huebner K. WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 2010; 6 (02) 249-259 . Doi: 10.2217/fon.09.152
  • 22 Ludes-Meyers JH, Bednarek AK, Popescu NC, Bedford M, Aldaz CM. WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res 2003; 100 (1-4): 101-110 . Doi: 10.1159/000072844
  • 23 Schrock MS, Huebner K. WWOX: a fragile tumor suppressor. Exp Biol Med (Maywood) 2015; 240 (03) 296-304 . Doi: 10.1177/1535370214561590
  • 24 Lewandowska U, Zelazowski M, Seta K, Byczewska M, Pluciennik E, Bednarek AK. WWOX, the tumour suppressor gene affected in multiple cancers. J Physiol Pharmacol 2009; 60 (Suppl. 01) 47-56
  • 25 Piver MS, Rutledge F, Smith JP. Five classes of extended hysterectomy for women with cervical cancer. Obstet Gynecol 1974; 44 (02) 265-272
  • 26 Heaney NS. Additional data in the technic of vaginal hysterectomy. West J Surg, Obstet Gynecol 1948; 56 (07) 377-385
  • 27 Benedet JL, Bender H, Jones III H, Ngan HY, Pecorelli S. ; FIGO Committee on Gynecologic Oncology. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. Int J Gynaecol Obstet 2000; 70 (02) 209-262 . Doi: 10.1016/S0020-7292(00)90001-8
  • 28 Kamura T, Shigematsu T, Kaku T. , et al. Histopathological factors influencing pelvic lymph node metastases in two or more sites in patients with cervical carcinoma undergoing radical hysterectomy. Acta Obstet Gynecol Scand 1999; 78 (05) 452-457 . Doi: 10.1034/j.1600-0412.1999.780520.x
  • 29 Gao G, Smith DI. WWOX, large common fragile site genes, and cancer. Exp Biol Med (Maywood) 2015; 240 (03) 285-295 . Doi: 10.1177/1535370214565992
  • 30 Sauer G, Deissler H. Angiogenesis: prognostic and therapeutic implications in gynecologic and breast malignancies. Curr Opin Obstet Gynecol 2003; 15 (01) 45-49
  • 31 Randall LM, Monk BJ, Darcy KM. , et al. Markers of angiogenesis in high-risk, early-stage cervical cancer: A Gynecologic Oncology Group study. Gynecol Oncol 2009; 112 (03) 583-589 . Doi: 10.1016/j.ygyno.2008.11.013
  • 32 Wen J, Xu Z, Li J. , et al. Decreased WWOX expression promotes angiogenesis in osteosarcoma. Oncotarget 2017; 8 (37) 60917-60932 . Doi: 10.18632/oncotarget.17126
  • 33 Yin CM, Yao YF, Yan ZL, Yang HY. [Correlation between mutation of p53 gene 2-4 exons from peripheral blood and HPV16 positive cervical cancer susceptibility and clinical significance]. Zhonghua Fu Chan Ke Za Zhi 2017; 52 (05) 320-326 . Doi: 10.3760/cma.j.issn.0529-567X.2017.05.006
  • 34 Wang X, Lv W, Qi F. , et al. Clinical effects of p53 overexpression in squamous cell carcinoma of the sinonasal tract: A systematic meta-analysis with PRISMA guidelines. Medicine (Baltimore) 2017; 96 (12) e6424 . Doi: 10.1097/MD.0000000000006424
  • 35 Advincula AP, Wang K. The evolutionary state of electrosurgery: where are we now?. Curr Opin Obstet Gynecol 2008; 20 (04) 353-358 . Doi: 10.1097/GCO.0b013e3283073ab7
  • 36 McCluggage WG, Connolly LE, McGregor G, Hyland PL, Hall PA. A Strategy for defining biologically relevant levels of p53 protein expression in clinical samples with reference to endometrial neoplasia. Int J Gynecol Pathol 2005; 24 (04) 307-312 . Doi: 10.1097/01.pgp.0000167113.86586.65
  • 37 Portari EA, Russomano FB, de Camargo MJ. , et al. Immunohistochemical expression of cyclin D1, p16Ink4a, p21WAF1, and Ki-67 correlates with the severity of cervical neoplasia. Int J Gynecol Pathol 2013; 32 (05) 501-508 . Doi: 10.1097/PGP.0b013e31826f5cf6
  • 38 Garima PS, Pandey S, Pandey LK, Saxena AK, Patel N. The role of p53 gene in cervical carcinogenesis. J Obstet Gynaecol India 2016; 66 (Suppl. 01) 383-388 . Doi: 10.1007/s13224-015-0754-1
  • 39 Xiao J, Zhou J, Fu M. , et al. Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncol Lett 2017; 13 (05) 3676-3680 . Doi: 10.3892/ol.2017.5901
  • 40 Richards RI, Choo A, Lee CS, Dayan S, O'Keefe L. WWOX, the chromosomal fragile site FRA16D spanning gene: its role in metabolism and contribution to cancer. Exp Biol Med (Maywood) 2015; 240 (03) 338-344 . Doi: 10.1177/1535370214565990
  • 41 Samuel N, Wilson G, Id Said B. , et al. Transcriptome-wide characterization of the endogenous miR-34A-p53 tumor suppressor network. Oncotarget 2016; 7 (31) 49611-49622 . Doi: 10.18632/oncotarget.10417
  • 42 Héninger E, Krueger TE, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 2015; 6: 29 . Doi: 10.3389/fimmu.2015.00029