Hamostaseologie 2007; 27(04): 268-272
DOI: 10.1055/s-0037-1617092
Original article
Schattauer GmbH

Das Janusgesicht der Einzelfaktoren

Hohe Spiegel, hohes thromboembolisches Risiko?The Janus face of coagulation factorsHigh levels, high thromboembolic risk?
C. M. Schambeck
1   Zentrallabor am Campus Kiel des Universitätsklinikums Schleswig-Holstein
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Das Wissen um eine Blutungsneigung infolge Einzelfaktorenmangel ist Allgemeingut. Das Gegenteil – eine Thromboseneigung infolge hoher Einzelfaktorenspiegel – scheint nicht überraschend, doch erst in jüngster Zeit wurde ein Zusammenhang zwischen dem Spiegel von Einzelfaktoren und dem Risiko für venöse Thromboembolien beschrieben. Gut dokumentiert ist die Rolle hoher Faktor- VIII(FVIII)-Spiegel. Das Risiko für ein erstmaliges Thromboseereignis ist ähnlich hoch wie das Risiko infolge einer APC-Resistenz. Ein familiärer Hintergrund wurde für hohe FVIII-Spiegel beschrieben. Veränderungen innerhalb des FVIII- oder von-Willebrand-Faktor(VWF)-Gens scheinen nicht verantwortlich zu sein, da Polymorphismen dieser Gene nicht mit venösen Thromboembolien assoziiert sind. Eine erhöhte FVIII/VWF-Ratio deutet auf eine verminderte FVIII-Clearance hin. Möglicherweise ist das Low-density-lipoprotein- receptor-related-Protein – dieser Rezeptor vermittelt die hepatische Clearance des FVIII-VWF-Komplexes – involviert. Der Prothrombin-G20210A-Polymorphismus ist mit hohen Prothrombinspiegeln assoziiert, die vielleicht über eine Fibrinolyseresistenz des Gerinnsels zum Thromboserisiko beitragen.

Summary

Bleeding tendency as a result of clotting factor deficiency is common knowledge. The counterpart, i.e. thrombophilia due to high clotting factor levels, is not surprising, but an association between factor level and thrombosis risk has just recently been described. The role of high factor VIII (FVIII) levels is well documented. The risk of high FVIII levels for the first event is similarly high as that of APC resistance. There is a familiar background of high FVIII levels. Alterations within the FVIII or the von Willebrand factor genes seem to be not causal since polymorphisms of these genes are not associated with venous thromboembolism. An increased FVIII/VWF ratio indicates a reduced FVIII clearance. Probably, the low-density lipoprotein receptorrelated protein, i.e. the receptor mediating the hepatic clearance of the FVIII-VWF-complex, is involved. The well known prothrombin G20210A polymorphism is associated with high prothrombin levels perhaps contributing to thrombosis risk via clot resistance against fibrinolysis.

 
  • Literatur

  • 1 Berger M, Mattheisen M, Kulle B. et al. High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11. Blood 2005; 105: 638-644.
  • 2 Berger M, Schmidt H, Kulle B. et al. Association of ADAMDEC1 haplotype with high factor VIII levels in venous thromboembolism. J Thromb Haemost 2007; 5 (Suppl. 02) P-W-461.
  • 3 Bovenschen N, Herz J, Grimbergern JM. et al. Elevated plasma factor VIII in a mouse model of lowdensity lipoprotein receptor-related protein deficiency. Blood 2003; 101: 3933-3939.
  • 4 Carter AM, Sachchithananthan M, Stasinopoulos S. et al. Prothrombin G20210A is a bifunctional gene polymorphism. Thromb Haemost 2002; 87: 846-853.
  • 5 Castaman G, Tosetto A, Simioni M. et al. Phenotypic APC resistance in carriers of the A20210 prothrombin mutation is associated with an increased risk of venous thrombosis. Thromb Haemost 2001; 86: 804-808.
  • 6 Ceelie H, Spaargaren-Van Riel CC, Bertina RM. et al. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3’-end formation. J Thromb Haemost 2004; 2: 119-127.
  • 7 Christiansen SC, Cannegieter SC, Koster T. et al. Thrombophilia, clinical factors, and recurrent venous thrombotic events. JAMA 2005; 293: 2352-2361.
  • 8 Collet J-P, Soria J, Mirshahi M. et al. Dusart syndrome : a new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure. Blood 1993; 82: 2462-2469.
  • 9 Collet J-P, Park D, Lesty C. et al. Influence of fibrin network confirmation and fibrin fiber diameter on fibrinolysis speed : dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 2000; 20: 1354-1361.
  • 10 Cunnigham N, Laffan MA, Manning RA. et al. Low-density lipoprotein receptor-related protein polymorphisms in patients with elevated factor VIII coagulant activity and venous thrombosis. Blood Coagul Fibrinolysis 2005; 16: 465-8.
  • 11 Cushman M, O’Meara E, Heckbert SR. et al. Coagulation factors IX-XIII and risk of future venous thrombosis: the longitudinal investigation of thromboembolism etiology (LITE). J Thromb Haemost 2007; 5 (Suppl. 02) P-M-492.
  • 12 De Visser MCH, Poort SR, Vos HL. et al. Factor X levels, polymorphisms in the promoter region of factor X, and the risk of venous thrombosis. Thromb Haemost 2001; 85: 1011-1017.
  • 13 De Visser MCH, van Hylckama Vlieg A, Tans G. et al. Determinants of the aPTT- and ETP-based APC sensitivity tests. J Thromb Haemost 2005; 3: 1488-1494.
  • 14 Eischer L, Gartner V, Schulman S. et al. 6 months versus prolonged anticoagulation for prevention of recurrent venous thromboembolism in patients with high factor VIII levels. J Thromb Haemost 2007; 5 (Suppl. 02) P-M-658.
  • 15 Folsom AR, Cushman M, Tsai MY. et al. Prospective study of the G20210A polymorphism in the prothrombin gene, plasma prothrombin concentration, and incidence of venous thromboembolism. Am J Hematol 2002; 71: 285-290.
  • 16 Gabriel DA, Muga K, Boothroyd EM. The effect of fibrin structure on fibrinolysis. J Biol Chem 1992; 267: 24259-24263.
  • 17 Gehring NH, Frede U, Neu-Yilik G. et al. Increased efficiency of mRNA 3’ end formation: A new genetic mechanism contributing to hereditary thrombophilia. Nat Genet 2001; 28: 389-392.
  • 18 Gerdes VE, Kraaijenhagen RA, Vogels EW. et al. Factor XI gene analysis in thrombophilia and factor XI deficiency. J Thromb Haemost 2004; 2: 1015-1017.
  • 19 Henkens CM, Bom VJ, van der Meer J. Lowered APC-sensivitiy ratio related to increased factor VIII-clotting activity. Thromb Haemost 1995; 74: 1198-1199.
  • 20 Kamphuisen PW, Rosendaal FR, Eikenboom HCJ. et al. Factor V antigen levels and venous thrombosis: risk profile, interaction with factor V Leiden, and relation with factor VIII antigen levels. Arterioscler Thromb Vasc Biol 2000; 20: 1382-1386.
  • 21 Kamphuisen PW, Eikenboom JCJ, Rosendaal FR. et al. High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von Willebrand factor and factor VIII gene. Br J Haematol 2001; 115: 156-158.
  • 22 Khachidze M, Buil A, Viel KR. et al. Genetic determinants of normal variation in coagulation factor IX levels: genome-wide scan and examination of the FIX structural gene. J Thromb Haemost 2006; 4: 1537-1545.
  • 23 Koenen RR, Tans G, van Oerle R. et al. The APCindependent anticoagulant activitiy of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation. Blood 2003; 102: 1686-1692.
  • 24 Koster T, Rosendaal FR, Reitsma PH. et al. Factor VII and fibrinogen levels as risk factors for venous thrombosis. A case-control study of plasma levels and DNA polymorphisms – The Leiden Thrombophilia Study (LETS). Thromb Haemost 1994; 71: 719-722.
  • 25 Koster T, Blann AD, Briet E. et al. Role of clotting factor VIII in effect of von Willebrand factor on occurrence deep-vein thrombosis. Lancet 1995; 345: 152-155.
  • 26 Kyrle PA, Minar E, Hirschl M. et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000; 343: 457-462.
  • 27 Mansvelt EPG, Laffan M, McVey JH. et al. Analysis of the F8 gene in individuals with high plasma factor VIII:C levels and associated venous thrombosis. Thromb Haemost 1998; 80: 561-565.
  • 28 Marchetti G, Lunghi B, Legnani C. et al. Contribution of low density lipoprotein receptor-related protein genotypes to coagulation factor VIII levels in thrombotic women. Haematologica 2006; 91: 1261-1263.
  • 29 Meijers JC, Tekelenburg WL, Bouma BN. et al. High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 2000; 342: 696-701.
  • 30 Nossent AY, Dai L, Rosendaal FR. et al. Beta 2 adrenergic receptor polymorphisms: Association with factor VIII and von Willebrand factor levels and the risk of venous thrombosis. J Thromb Haemost 2005; 3: 405-407.
  • 31 O’Donnell J, Mumford AD, Manning RA. et al. Elevation of factorVIII:C in venous thromboembolism is persistent and independent of the acute phase response. Thromb Haemost 2000; 83: 10-13.
  • 32 O’Donnell J, Mumford AD, Manning RA. et al. Marked elevation of thrombin generation in pa- tients with elevated FVIII:C and venous thromboembolism. Br J Haematol 2001; 115: 687-691.
  • 33 O’Donnell J, Manning RA, Laffan MA. Betaadrenergic receptor polymorphisms in patients with elevated factor VIII levels with venous thrombosis. Br J Haematol 2003; 123: 139-141.
  • 34 Poort SR, Rosendaal FR, Reitsma PH. et al. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-3703.
  • 35 Schambeck CM, Hinney K, Haubitz I. et al. Familial clustering of high factor VIII levels in patients with venous thromboembolism. Art Thromb Vasc Biol 2001; 21: 289-292.
  • 36 Schambeck CM, Grossmann R, Zonnur S. et al. High factor VIII levels in venous thromboembolism: role of unbound FVIII. Thromb Haemost 2004; 92: 42-46.
  • 37 Soria JM, Almasy L, Souto JC. et al. Linkage analysis demonstrates that the prothrombin G20210A mutation jointly influences plasma prothrombin levels and risk of thrombosis. Blood 2000; 95: 2780-2785.
  • 38 Strickland DK, Ranganathan S. Diverse role of LDL receptor-related protein in the clearance of proteases and in signalling. J Thromb Haemost 2003; 1: 1663-1670.
  • 39 Tsai AW, Cushman M, Rosamond WD. et al. Coagulation factors, inflammation markers, and venousthromboembolism: The Longitudinal Investigation of Thromboembolism Etiology (LITE). Am J Med 2002; 113: 636-642.
  • 40 Van der Meer FJM, Koster T, Vandenbroucke JP, Briet E, Rosendaal FR. The Leiden thrombophilia study (LETS). Thromb Haemost 1997; 78: 631-635.
  • 41 Van Hylckama Vlieg A, van der Linden IK, Bertina RM. et al. High levels of factor IX increase the risk of venous thrombosis. Blood 2000; 95: 3678-3682.
  • 42 Van Hylckama Vlieg A, Rosendaal FR. High levels of fibrinogen are associated with the risk of deep venous thombosis mainly in the elderly. J Thromb Haemost 2003; 1: 2677-2678.
  • 43 Viel KR, Machiah DK, Warren DM. et al. A sequence variation scan of coagulation factor VIII structural gene and associations with plasma FVIII activity levels. Blood 2007; 109: 3713-3724.
  • 44 Von Ahsen N, Oellerich M. The intronic prothrombin 19911A>G polymorphism influences splicing efficiency and modulates effects of the 20210G>A polymorphism on mRNA amount and expression in a stable reporter gene assay system. Blood 2004; 103: 586-593.
  • 45 Vormittag R, Bencur P, Ay C. et al. Low-density lipoprotein receptor-related protein 1 polymorphism 663 C > T affects clotting factor VIII activity and increases the risk of venous thromboembolism. J Thromb Haemost 2007; 5: 497-502.
  • 46 Wahlberg TB, Savidge GF, Blomback M. et al. Influence of age, sex and blood groups on 15 blood coagulation laboratory variables in a reference material composed of 80 donors. Vox Sanguinis 1980; 39: 301-8.
  • 47 Weltermann A, Eichinger S, Bialonczyk C. et al. The risk of recurrent venous thromboembolism among patients with high factor IX levels. J Thromb Haemost 2003; 1: 28-32.
  • 48 Wolberg AS, Monroe DM, Roberts HR. et al. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanisms of the increased thrombotic risk. Blood 2003; 101: 3008-3013.
  • 49 Yepes M, Sandkvist M, Moore EG. et al. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112: 1533-15340.