Hamostaseologie 2008; 28(01/02): 30-36
DOI: 10.1055/s-0037-1616918
Original Article
Schattauer GmbH

Role of coagulation and fibrinolysis in lung and renal fibrosis

Die Bedeutung von Gerinnung und Fibrinolyse bei Lungen- und Nierenfibrose
C. Ruppert
1   University of Giessen Lung Center, Germany
,
P. Markart
1   University of Giessen Lung Center, Germany
,
M. Wygrecka
1   University of Giessen Lung Center, Germany
,
K. T. Preissner
1   University of Giessen Lung Center, Germany
,
A. Günther
1   University of Giessen Lung Center, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
29 December 2017 (online)

Summary

Elevated procoagulant and suppressed fibrinolytic activities are regularly encountered in different forms of clinical and experimental fibrosis of the lungs and the kidneys. Although primarily serving to provide a provisional matrix of repair largely consisting of fibrin and fibronectin, the involved procoagulant serine proteases and protease inhibitors may also exert distinct cellular downstream signaling events modifying the fibrotic reponse.

In this review, evidence for an impaired regulation of coagulation and fibrinolysis factors in clinical and experimental lung and renal fibrosis is provided and the role of PAR (protease activated receptor) induced profibrotic and HGF (hepatocyte growth factor) elicited antifibrotic cellular events is worked out. In view of experiments obtained in animal models of lung and renal fibrosis, the potential therapeutic usefulness of anticoagulant or profibrinolytic strategies is discussed.

Zusammenfassung

Bei Patienten mit fibrosierenden Lungen- und Nierenerkrankungen ist eine deutliche Verschiebung der lokalen hämostaseologischen Balance zu Gunsten einer vermehrten Gerinnung zu verzeichnen. Obgleich die vermehrte Bereitstellung von TF/FVII, FX, Thrombin und PAI-1 einerseits und die Suppression von u-PA andererseits zunächst vor allem die Entstehung einer primären Matrix der Wundheilung begünstigen, könnten diese Faktoren über die Aktivierung von PAR (protease activated receptor) und HGF (hepatocyte growth factor) pro- bzw. antifibrotische Signalkaskaden wesentlich beeinflussen.

In diesem Review wird der aktuelle Kenntnisstand zu Veränderungen des Gerinnungs- und Fibrinolysesystem in Patienten und tierexperimentellen Modellen mit fibrosierenden Lungen- und Nierenerkrankungen dargelegt. Die Beteiligung PAR- bzw. HGF-abhängiger Signaltransduktionskaskaden bei der Modulation der Fibroseantwort wird gezeigt und die therapeutische Beeinflussung der hämostaseologischen Balance zur Behandlung der Fibroseantwort diskutiert.

 
  • References

  • 1 Robinson BWS. Production of plasminogen activator by alveolar macrophages in normal subjects and patients with interstitial lung disease. Thorax 1988; 43: 508-515.
  • 2 Kotani I, Sato A, Hayakawa H. et al. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res 1995; 77: 493-504.
  • 3 Günther A, Mosavi P, Ruppert C. et al. Enhanced tissue factor pathway activity and fibrin turnover in the alveolar compartment of patients with interstitial lung disease. Thromb Haemost 2000; 83: 853-860.
  • 4 Kuhn 3rd C, Boldt J, King TE. et al. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 1989; 140: 1693-1703.
  • 5 Imokawa S, Sato A, Hayakawa H. et al. Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis. Am J Respir Crit Care Med 1997; 156: 631-636.
  • 6 Idell S, James KK, Gillies C. et al. Abnormalities of pathways of fibrin turnover in lung lavage of rats with oleic acid and bleomycin-induced lung injury support alveolar fibrin deposition. Am J Pathol 1989; 135: 387-399.
  • 7 Olman MA, Mackman N, Gladson CL. et al. Changes in procoagulant and fibrinolytic gene expression during bleomycin-induced lung injury in the mouse. J Clin Invest 1995; 96: 1621-1630.
  • 8 Wygrecka M, Markart P, Ruppert C. et al. Compartment- and cell-specific expression of coagulation and fibrinolysis factors in the murine lung undergoing inhalational versis intravenous endotocin application. Thromb Haemost 2004; 92: 529-540.
  • 9 Wygrecka M, Markart P, Ruppert C. et al. Cellular origin of pro-coagulant and (anti)-fibrinolytic factors in bleomycin-injured lungs. Eur Respir J 2007; 29: 1-10.
  • 10 Rao LV, Rapaport SI. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci USA 1988; 85: 6687-6691.
  • 11 de Moerloose P, De Benedetti E, Nicod L. et al. Procoagulant activity in bronchoalveolar fluids: no relationship with tissue factor pathway inhibitor activity. Thromb Res 1992; 65: 507-518.
  • 12 Yasui H, Gabazza EC, Tamaki S. et al. Intratracheal administration of activated Protein C inhibits bleomycin-induced lung fibrosis in the mouse. Am J Respir Crit Care Med 2001; 163: 1660-1668.
  • 13 Kobayashi H, Gabazza EC, Taguchi O. et al. Protein C anticoagulant system in patients with interstitial lung disease. Am J Respir Crit Care Med 1998; 157: 1850-1854.
  • 14 Haidaris PJ. Induction of fibrinogen biosynthesis and secretion from cultured pulmonary epithelial cells. Blood 1997; 89: 873-882.
  • 15 Kincaid-Smith P. Coagulation and renal disease. Kidney Int 1972; 2: 183-190.
  • 16 Enestrom S, Druid H, Rammer L. Fibrin deposition in the kidney in post-ischaemic renal damage. Br J Exp Pathol 1988; 69: 387-394.
  • 17 Daugas E, Nochy D, le Thi Huong D. et al. Antiphospholipid syndrome nephropathy in systemic lupus erythematosus. J Am Soc Nephol 2002; 13: 42-52.
  • 18 Wang Y, Pratt JR, Hartley B. et al. Expression of tissue type plasminogen activator and type 1 plasminogen activator inhibitor, and persistent fibrin deposition in chronic renal allograft failure. Kidney Int 1997; 52: 371-377.
  • 19 Wang Y, Pratt JR, Tam FW. et al. Up-regulation of type 1 plasminogen activator inhibitor messenger RNAwith thrombotic changes in renal grafts. Transplantation 1996; 61: 684-689.
  • 20 Wendt T, Zhang YM, Bierhaus A. et al. Tissue factor expression in an animal model of hydronephrosis. Nephrol Dial Transplant 1995; 10: 1820-1828.
  • 21 Grandaliano G, Monno R, Ranieri E. et al. Regenerative and proinflammatory effects of thrombin on human proximal tubular cells. J Am Soc Nephrol 2000; 11: 1016-1025.
  • 22 Paueksakon P, Revelo MP, Ma LJ. et al. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int 2002; 61: 2142-2148.
  • 23 Yamamoto T, Nakamura T, Noble NA. et al. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 1993; 90: 1814-1818.
  • 24 Hamano K, Iwano M, Akai Y. et al. Expression of glomerular plasminogen activator inhibitor type I in glomerulonephritis. Am J Kidney Dis 2002; 39: 695-705.
  • 25 Rondeau E, Mougenot B, Lacave R. et al. Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies. Clin Nephrol 1990; 33: 55-60.
  • 26 Grandaliano G, Gesualdo L, Ranieri E. et al. Tissue factor, plasminogen activator inhibitor-1, and thrombin receptor expression in human crescentic glomerulonephritis. Am J Kidney Dis 2000; 35: 726-738.
  • 27 Lee HS, Park SY, Moon KC. et al. MRNA expression of urokinase and plasminogen activator inhibitor-1 in human crescentic glomerulonephritis. Histopathology 2001; 39: 203-209.
  • 28 Yamamoto T, Noble NA, Cohen AH. et al. Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 1996; 49: 461-469.
  • 29 Nakamura T, Tanaka N, Higuma N. et al. The localization of plasminogen activator inhibitor-1 in glomerular subepithelial deposits in membranous nephropathy. J Am Soc Nephrol 1996; 7: 2434-2444.
  • 30 Tang WH, Friess H, di Mola FF. et al. Activation of the serine proteinase system in chronic kidney rejection. Transplantation 1998; 65: 1628-1634.
  • 31 Wang Y, Pratt JR, Hartley B. et al. Expression of tissue type plasminogen activator and type 1 plasminogen activator inhibitor, and persistent fibrin deposition in chronic renal allograft failure. Kidney Int 1997; 52: 371-377.
  • 32 Shihab FS, Yamamoto T, Nast CC. et al. Transforming growth factor-beta and matrix protein expression in acute and chronic rejection of human renal allografts. J Am Soc Nephrol 1995; 6: 286-294.
  • 33 Xu Y, Hagege J, Mougenot B. et al. Different expression of the plasminogen activation system in renal thrombotic microangiopathy and the normal human kidney. Kidney Int 1996; 50: 2011-2019.
  • 34 Rondeau E, Mougenot B, Lacave R. et al. Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies. Clin Nephrol 1990; 33: 55-60.
  • 35 Paueksakon P, Revelo MP, Ma LJ. et al. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int 2002; 61: 2142-2148.
  • 36 Ma LJ, Marcantoni C, Linton MF. et al. Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int 2001; 59: 1899-1910.
  • 37 Eddy AA, Fogo AB. Plasminogen activator inhibitor- 1 in chronic kidney disease: Evidence and mechanisms of action. J Am Soc Neprol 2006; 17: 2999-3012.
  • 38 Seeger W, Elssner A, Günther A. et al. Lung surfactant phospholipids associate with polymerizing fibrin – loss of surface activity. Am J Respir Cell Mol Biol 1993; 9: 213-220.
  • 39 Günther A, Kalinowski M, Elssner A. et al. Clot embedded natural surfactant: kinetics of fibrinolysis and surface activity. Am J Physiol 1994; 267: L618-624.
  • 40 Kim KK, Kugler MC, Wolters PJ. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis an dis regulated by the extracellular matrix. Proc Nat Acad Sci 2006; 103: 13180-13185.
  • 41 Hattori N, Degen J, Sisson TH. et al. Bleomycin-induced pulmonary fibrosis in fibrinogen-null mice. J Clin Invest 2000; 106: 1341-1350.
  • 42 Wilberding JA, Ploplis VA, McLennan L. et al. Development of pulmonary fibrosis in fibrinogendeficient mice. Ann NY Acad Sci 2001; 936: 542-548.
  • 43 Leger AJ, Covic L, Kuliopulos A. Protease-activated receptors in cardiovascular diseases. Circulation 2006; 114: 1070-1077.
  • 44 Chambers RC, Laurent GJ. Coagulation cascade proteases and tissue fibrosis. Biochem Soc Trans 2002; 30: 194-200.
  • 45 MacFarlane SR, Seatter MJ, Kanke T. et al. Protease- activated receptors. Pharmacol Rev 2001; 53: 245-282.
  • 46 Isermanm B, Vinnikov LA, Madhusudhan T. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 2007; 13: 1349-1358.
  • 47 Brownee M. Preventing kidney cell suicide. Nat Med 2007; 13: 1284-1285.
  • 48 Mosnier LO, Ziokovoc BV, Griffin JH. The cytoprotective protein C pathway. Blood 2007; 109: 1361-1372.
  • 49 Murphy Stanton H, Cowell S. et al. Mechanisms for pro MMP activation. APMIS 1999; 107: 38.
  • 50 Zhang Y, Zhou ZH, Bugge TH. et al. Urokinasetype plasminogen activator stimulation of monocyte matrix-metalloprotease-1 production is mediated by plasmin-dependent signaling through annexin A2 and inhibited by inactive plasmin. J Immunol 2007; 179: 3297-3304.
  • 51 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3: 932-943.
  • 52 Naldini L, Tamagnone L, Vigna E. et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth/scatter factor. EMBO J 1992; 11: 4825-4833.
  • 53 Naldini L, Vigna E, Bardelli A. et al. Biological Activation of pro-HGF (hepatocate growth factor) by urokinase is controlled by a stochiometric reaction. J Biol Chem 1995; 270: 603-611.
  • 54 Wahab NA, Mason RM. A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Nephron Exp Nephrol 2006; 104: e129-e134.
  • 55 Inoue T, Okada H, Kobayashi T. et al. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogensis in 5/6 nephrectomized mice. FASEB J 2003; 17: 268-270.
  • 56 Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol 2005; 16: 68-78.
  • 57 Marchand-Adam S, Marchal J, Cohen M. et al. Defect of hepatocyte growth factor secretion by fibroblasts in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2003; 168: 1156-1161.
  • 58 Charbeneau RP, Christensen PJ, Chrisman CJ. et al. Impaired synthesis of prostaglandin E2 by lung fibroblasts and alveolar epithelial cells from GMCSF -/- mice: implications for fibroproliferation. Am J Physiol 2003; 284: L1103-L1111.
  • 59 Kolodsick JE, Peters-Golden M, Larios J. et al. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Resp Cell Mol Biol 2003; 29: 537-544.
  • 60 Moore BB, Peters-Golden M, Christensen PJ. et al. Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE2. AJP 2003; 284: L342-I349.
  • 61 Marchand-Adam S, Fabre A, Mailleux AA. et al. Defect of pro-hepatocyte growth factor activation by fibroblasts in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2006; 168: 58-66.
  • 62 Eitzman DT, McCoy RD, Zheng X. et al. Bleomycin- induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97: 232-237.
  • 63 Swaisgood CM, French EL, Noga C. et al. The development of bleomycin-induced pulmonary fi- brosis in mice deficient for components of the fibrinolytic system. Am J Pathol 2000; 157: 177-187.
  • 64 Sisson TH, Hanson KE, Subbotina N. et al. Inducible lung-specific urokinase expression reduces fibrosis and mortality after lung injury in mice. Am J Physiol 2002; 283: L1023-L1032.
  • 65 Yasui H, Gabazza EC, Tamaki S. et al. Intratracheal administration of activated protein C inhibits bleomycin induced lung fibrosis in the mouse. Am J Respir Crit Care Med 2001; 163: 1660-1668.
  • 66 Günther A, Lübke N, Ermert M. et al. Prevention of bleomycin-induced lung fibrosis by aerosolization of heparin or urokinase in rabbits. Am J Respir Crit Care Med 2003; 168: 1358-1365.
  • 67 Howell DC, Goldsack NR, Marshall RP. et al. Direct thrombin inhibition reduces lung collagen accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am J Pathol 2001; 159: 1383-1395.
  • 68 Howell DC, Johns RH, Lasky JA. et al. Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol 2005; 166: 1353-1365.
  • 69 Kijiyama N, Ueno H, Sugimoto I. et al. Intratracheal gene transfer of tissue factor pathway inhibitor attenuates pulmonary fibrosis. Biochem Biophys Res Commun 2006; 339: 1113-1119.
  • 70 Watanabe M, Ebina M, Orson FM. et al. Hepatocyte growth factor gene transfer to alveolar septae for effective suppression of lung fibrosis. Mol Ther 2005; 12: 58-67.
  • 71 Gazdhar A, Fachinger P, van Leer C. et al. Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin. induced lung fibrosis. Am J Physiol 2007; 292: L529-I536.
  • 72 Yaekashiwa M, Nakayama S, Ohnuma K. et al. Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin A morphological study. Am J Respir Crit Care Med 1997; 156: 1937-1944.
  • 73 Dohi M, Hasegawa T, Yamamoto K. et al. Hepatocyte growth factor attenuates collagen accumulation in a murine model of pulmonary fibrosis. Am J Respir Crit Care Med 2000; 162: 2302-2307.
  • 74 Kitching AR, Kong YZ, Huanhg XR. et al. Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J Am Soc Nephrol 2003; 14: 1487-1495.
  • 75 Nicholas SB, Aguiniga E, Ren Y. et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int 2005; 67: 1297-1307.
  • 76 Collins SJ, Alexander SL, Lopez-Guisa JM. et al. Plasminogen activator inhibitor-1 deficiency has renal benefits but some adverse systemic consequences in diabetic mice. Nephron Exp Nephrol 2006; 104: 23-34.
  • 77 Oda T, Jung YO, Kim H. et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 2001; 30: 587-596.
  • 78 Krag S, Danielsen CC, Carmeliet P. et al. Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-beta1-induced kidney disease. Kidney Int 2005; 68: 2651-2666.
  • 79 Matsuo S, Lopez-Guisa JM, Cai X. et al. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1 overexpressing mice. Kideny Int 2005; 68: 2221-2238.
  • 80 Huang Y, Haraguchi M, Lawrence DA. et al. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003; 112: 379-388.
  • 81 Yang J, Shultz RW, Mars WM. et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 2002; 110: 1525-1538.
  • 82 Kitching AR, Holdsworth SR, Ploplis VA. et al. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 1997; 185: 963-968.
  • 83 Haraguchi M, Border WA, Huang Y. et al. T-PA promotes glomerular plasmin generation and matrix degradation in experimental glomerulonephritis. Kidney Int 2001; 59: 2146-2155.
  • 84 Zoja C, Corna D, Macconi D. et al. Tissue plasminogen activator therapy of rabbit nephrotoxic nephritis. Lab Invest 1990; 62: 34-40.
  • 85 Yamaguchi I, Lopez-Guisa JM, Cai X. et al. Endogenous urokinase lacks antifibrotic activity during progressive renal injury. Am J Physiol 2007; 293: F12-F19.
  • 86 Zhang G, Kim H, Cai X. et al. Urokinase receptor modulates cellular and angiogenic responses in obstructive uropathy. J Am Soc Nephrol 2003; 14: 1254-1271.
  • 87 Okada H, Watanabe Y, Inoue T. et al. Transgenederived hepatocyte growth factor attenuates reactive renal fibrosis in aristolochic acid nephrotocity. Nephrol Dial Transplant 2003; 18: 2515-2523.
  • 88 Edgetton KL, Gow RM, Kelly DJ. et al. Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int 2004; 66: 68-76.
  • 89 Zhang G, Kernan KA, Collins SJ. et al. Plasmin( ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals. J Am Soc Nephrol 2007; 18: 846-859.
  • 90 Border WA, Wilson CB, Dixon FJ. Failure of heparin to affect two types of experimental glomerulonephritis in rabbits. Kidney Int 1975; 8: 140-148.