Hamostaseologie 2006; 26(01): 13-21
DOI: 10.1055/s-0037-1616871
Original article
Schattauer GmbH

Aktuelle und zukünftige Entwicklungen in der Hämostaseologie

Current and future prospects in haemostasis
J. Oldenburg
1   Institut für Experimentelle Hämatologie und Transfusionsmedizin, Universitätsklinik Bonn
› Author Affiliations
Further Information

Publication History

Publication Date:
26 December 2017 (online)

Zusammenfassung

Die Entschlüsselung des humanen Genoms und neue methodische Werkzeuge bedingen einem rasanten Erkenntniszuwachs in der Hämostaseologie. Hierzu gehört die Identifizierung neuer Gene, das Verständnis komplexer Phänotypen (z. B. thromboembolische Erkrankungen), die Erforschung der beteiligten Proteine mittels Kristallstruktur, Darstellung von Protein-Protein-Interaktionen und Proteinexpressionsprofilen sowie die Entwicklung neuer und selektiver wirkender Antikoagulanzien. Die Bedeutung hämostaseologischer Proteine abseits ihrer klassischen Aufgaben in der Gerinnung (beyond haemostasis) für die Bereiche Wundheilung, Angiogenese, Inflammation, Immunsystem und Tumormetastasierung nimmt kontinuierlich zu. Der Patient wird von diesen Entwicklungen durch auf ihn ausgerichtete individualisierte Präventions- und Therapieprogramme profitieren. Diese schließen zukünftige Ansätze der regenerativen Medizin wie Stammzell- und Gentherapie ein.

Summary

Solving the human genome and new technical tools are nowadays rapidly increasing the knowledge of haemostasis. This includes the identification of novel genes, the understanding of complex phenotypes as thromboembolic disorders, the scientific exploration of the involved proteins by means of crystal structure, protein-protein-interactions and protein expression profiles as well as the development of new and more selectively acting anticoagulant drugs. The impact of haemostasis proteins in fields beyond haemostasis such as wound healing, angiogenesis, inflammation, immune system, and tumour growth is becoming more evident. Patients will profit from these developments by individualised prevention and therapy regimens, including future approaches of regenerative medicine as stem cell and gene therapy.

 
  • References

  • 1 Davie EW, Ratnoff OD. Waterfall sequence for intrinsic coagulation. Science 1964; 145: 1310-2.
  • 2 Macfarlane RG. An enzyme cascade in the blood clotting mechanism and its function as a biochemical amplifier. Nature 1964; 202: 498-9.
  • 3 Mullis K, Faloona F, Scharf S. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986; 51 Pt 1 263-73.
  • 4 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488-94.
  • 5 Gerritsen HE, Robles R, Lämmle B. et al. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 2001; 98: 1654-61.
  • 6 Hassenpflug WA, Budde U, Obser T. et al. Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood. 2005 im Druck.
  • 7 Nichols WC, Seligsohn U, Zivelin A. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61-70.
  • 8 Zhang B, Cunningham MA, Nichols WC. et al. Bleeding due to disruption of a cargo-specific ERto- Golgi transport complex. Nat Genet 2003; 34: 220-5.
  • 9 Rost S, Fregin A, Ivaskevicius V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537-41.
  • 10 The International Human Genome Mapping Consortium.. A physical map of the human genome. Nature 2001; 409: 934-41.
  • 11 The Celera Genomics Sequencing Team.. The sequence of the human genome. Science 2001; 291: 1304-51.
  • 12 The International HAPMAP consortium.. A haplotype map of the human genome. Nature 2005; 437: 1299-320.
  • 13 Endler G, Mannhalter C. Polymorphisms in coagulation factor genes and their impact on arterial and venous thrombosis. Clin Chim Acta 2003; 330: 31-55.
  • 14 Renne T, Pozgajova M, Gruner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271-81.
  • 15 Nakazawa F, Kannemeier C, Shibamiya A. et al. Extracellular RNA is a natural cofactor for the (auto-) activation of Factor VII-activating protease (FSAP). Biochem J 2005; 385: 831-8.
  • 16 Geisen C, Watzka M, Sittinger K. et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005; 94: 773-9.
  • 17 Carmeliet P. Biomedicine. Clotting factors build blood vessels. Science 2001; 293: 1602-4.
  • 18 Esmon CT. Role of coagulation inhibitors in inflammation. Thromb Haemost 2001; 86: 51-6.
  • 19 Versteeg HH, Spek CA, Peppelenbosch MP. et al. Tissue factor and cancer metastasis: the role of intracellular and extracellular signaling pathways. Mol Med 2004; 10: 6-11.
  • 20 Mitterbauer-Hohendanner G, Mannhalter C. The biological and clinical significance of MLL ab- normalities in haematological malignancies. Eur J Clin Invest 2004; 34 (Suppl. 02) 12-24.
  • 21 Oldenburg J, von Brederlow B, Fregin A. et al. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase- complex. Thromb Haemost 2000; 84: 937-41.
  • 22 Fregin A, Rost S, Wolz W. et al. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 2002; 100: 3229-32.
  • 23 Li T, Chang CY, Jin DY. et al. Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 541-4.
  • 24 Pelz HJ, Rost S, Hunerberg M. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 2005; 170: 1839-47.
  • 25 Tie JK, Nicchitta C, von Heijne G. et al. Membrane topology mapping of vitamin K epoxide reductase by in vitro translation/cotranslocation. J Biol Chem 2005; 280: 16410-6.
  • 26 Rost S, Fregin A, Hunerberg M. et al. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Thromb Haemost 2005; 94: 780-6.
  • 27 Goodstadt L, Ponting CP. Vitamin K epoxide reductase: homology, active site and catalytic mechanism. Trends Biochem Sci 2004; 29: 289-92.
  • 28 Ma Q, Cui K, Wang RW. et al. Site-directed mutagenesis of rat liver NAD(P)H: quinone oxidoreductase: roles of lysine 76 and cysteine 179. Arch Biochem Biophys 1992; 294: 434-9.
  • 29 Palareti G, Leali N, Coccheri S. et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort,prospective collaborative study (ISCOAT). Italian Study on Complications of Oral Anticoagulant Therapy. Lancet 1996; 348: 423-8.
  • 30 Yuan HY, Chen JJ, Lee MT. et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005; 14: 1745-51.
  • 31 Rieder MJ, Reiner AP, Gage BF. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285-93.
  • 32 Oldenburg J. Vitamin K intake and stability of oral anticoagulant treatment. Thromb Haemost 2005; 93: 799-800.
  • 33 Sun YM, Jin DY, Camire RM. et al. Vitamin K epoxide reductase significantly improves carboxylation in a cell line overexpressing factor X. Blood 2005; 106: 3811-5.
  • 34 Schurgers LJ, Shearer MJ, Halmujak K. et al. Effect of vitamin K intake on the stability of oral anticoagulant treatment: dose-response relationships in healthy subjects. Blood 2004; 104: 2682-9.
  • 35 Sconce E, Khan T, Mason J. et al. Patients with unstable control have a poorer dietary intake of vitamin K compared to patients with stable control of anticoagulation. Thromb Haemost 2005; 93: 872-5.
  • 36 Wajih N, Sane DC, Hutson SM. et al. Engineering of a recombinant vitamin K-dependent gammacarboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system. J Biol Chem 2005; 280: 10540-7.
  • 37 Wajih N, Hutson SM, Owen J. et al. Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide- reducing enzyme of the vitamin K cycle. J Biol Chem 2005; 280: 31603-7.
  • 38 Oldenburg J, Schroder J, Brackmann HH. et al. Environmental and genetic factors influencing inhibitor development. Semin Hematol 2004; 41 (Suppl. 01) 82-8.
  • 39 Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 2000; 95: 1517-32.
  • 40 Bertina RM, Koeleman BPC, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64-7.
  • 41 Rosendaal FR, Koster T, Vandenbroucke JP. et al. High risk of thrombosis in patients homozygous for factor V Leiden /Activated protein C resistance). Blood 1995; 85: 1504-8.
  • 42 Poort SR, Rosendaal FR, Reitsma PH. et al. A common genetic variation in the 3´-untranslated region of the prothrombin gene is associated with elevated plasman prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-703.
  • 43 Lee R. Factor V Leiden: a clinical review. Am J Med Sci 2001; 322: 88-102.
  • 44 Martinelli I, Bucciarelli P, Margaglione M. et al. The risk of venous thromboembolism in family members with mutations in the genes of factor V or prothrombin or both. Br J Haematol 2000; 111: 1223-9.
  • 45 Hessner MJ, Dinauer DM, Kwiatkowski R. et al. Age-dependent prevalence of vascular disease-associated polymorphisms among 2689 volunteer blood donors. Clin Chem 2001; 47: 1879-84.
  • 46 Mc Rae SJ, Ginsberg JS. New anticoagulants for venous thromboembolic disease. Curr Opin Cardiol 2005; 20: 502-8.
  • 47 Crowther M, Weitz JI. New anticoagulants: an update. Clin Adv Hematol Oncol 2004; 2: 743-9.
  • 48 Linkins L-A, Weitz JI. New anticoagulants. Sem Thromb Hemost 2003; 29: 619-31.
  • 49 Famulok M. Turning aptamers into anticoagulants. Nat Biotechnol 2004; 22: 1373-4.
  • 50 Rusconi CP, Scardino E, Layzer J. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 2002; 419: 90-4.
  • 51 Rusconi CP, Roberts JD, Pitoc GA. et al. Antidotemediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 2004; 22: 1423-8.
  • 52 Heckel A, Mayer G. Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. JAm Chem Soc 2005; 127: 822-3.