CC BY-NC-ND 4.0 · Revista Chilena de Ortopedia y Traumatología 2017; 58(03): 100-105
DOI: 10.1055/s-0037-1615254
Case Report | Caso Clínico
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Lesión osteocondral extensa de cóndilo femoral; tratamiento en un tiempo con matriz colágena y concentrado de médula ósea – reporte de un caso

Big Osteochondral Lesion; Treatment with Collagen Scaffold and Bone Marrow Concentrate – Case Report
Rafael Calvo R
1   Traumatólogo del Equipo de Rodilla de la Clínica Alemana, Universidad del Desarrollo Santiago, Santiago, Chile
,
David Figueroa P
2   Traumatólogo, Jefe del Equipo de Rodilla de la Clínica Alemana, Región Metropolitana, Santiago, Chile
,
Nelson Morales C
3   Fellowship Cirugía de Rodilla de la Clínica Alemana – UDD, Región Metropolitana, Santiago, Chile
,
Francisco Figueroa B
3   Fellowship Cirugía de Rodilla de la Clínica Alemana – UDD, Región Metropolitana, Santiago, Chile
,
Rafael Calvo M
4   Estudiante de Medicina Universidad del Desarrollo (UDD), Región Metropolitana, Santiago, Chile
› Institutsangaben
Weitere Informationen

Publikationsverlauf

23. Januar 2017

27. November 2017

Publikationsdatum:
26. Dezember 2017 (online)

Resumen

El tratamiento de las lesiones osteocondrales de gran tamaño y profundidad resultan un desafío debido a que las técnicas habituales (microfractura o transplante osteocondral autólogo), son insuficientes para cubrir el defecto; eso es particularmente importante en pacientes jóvenes, pues se debe intentar técnicas que generen la menor comorbilidad posible. Presentamos un caso de un paciente de 18 años con una lesión osteocondral de 6 cm2 por 14 mm de profundidad, tratado mediante autoinjerto óseo, concentrado de médula ósea y matriz colágena, con resultados satisfactorios tanto en lo funcional como en lo imagenológico. Esa técnica presenta la ventaja de realizarse en un tiempo y con una fuente de células troncales mesenquimáticas (Médula ósea), validada en la literatura y altamente reproducible.

Abstract

The treatment of large osteochondral defects represent a challenge, because the common techniques used (micro fracture or osteochondral autologous transplantation) are insufficient to cover the defect; this is particularly important in young patients where we expect the least comorbidity. We report a case of an 18-year-old patient with an ostechondral injury of 6 cm2 and 14 mm deep, treated with bone autograft, bone marrow concentrate and a matrix of collagen with satisfactory functional and images results. This technique has the advantage to be performed in one single time and with a source of mesenchymal stem cells (bone marrow) validated in the literature.

 
  • References

  • 1 Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 1982; 64 (03) 460-466
  • 2 Kerker JT, Leo AJ, Sgaglione NA. Cartilage repair: synthetics and scaffolds: basic science, surgical techniques, and clinical outcomes. Sports Med Arthrosc Rev 2008; 16 (04) 208-216
  • 3 Ozmeriç A, Alemdaroğlu KB, Aydoğan NH. Treatment for cartilage injuries of the knee with a new treatment algorithm. World J Orthop 2014; 5 (05) 677-684
  • 4 McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc Rev 2008; 16 (04) 196-201
  • 5 Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions: Results at 2-Year Follow-up. Cartilage 2011; 2 (03) 286-299
  • 6 Gianakos AL, Sun L, Patel JN, Adams DM, Liporace FA. Clinical application of concentrated bone marrow aspirate in orthopaedics: A systematic review. World J Orthop 2017; 8 (06) 491-506
  • 7 Bedi A, Feeley BT, Williams III RJ. Management of articular cartilage defects of the knee. J Bone Joint Surg Am 2010; 92 (04) 994-1009
  • 8 Michael W. Kessler, MD, MPH, George Ackerman, MD, Joshua S. Dines, MD,w and Daniel Grande, PhD. Emerging Technologies and Fourth Generation Issues in Cartilage Repair. Sports Med Arthrosc Rev 2008; 16: 246-254
  • 9 Emmerson BC, Görtz S, Jamali AA, Chung C, Amiel D, Bugbee WD. Fresh osteochondral allografting in the treatment of osteochondritis dissecans of the femoral condyle. Am J Sports Med 2007; 35 (06) 907-914
  • 10 Wood JJ, Malek MA, Frassica FJ. , et al. Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration. J Bone Joint Surg Am 2006; 88 (03) 503-507
  • 11 Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop 2017; 41 (04) 797-804
  • 12 Schiavone Panni A, Del Regno C, Mazzitelli G, D'Apolito R, Corona K, Vasso M. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. Knee Surg Sports Traumatol Arthrosc 2017
  • 13 Marcacci M, Kon E, Zaffagnini S. , et al. Autologous chondrocytes in a hyaluronic acid scaffold. Oper Tech Orthop 2006; 16: 266-270
  • 14 Chenite A, Chaput C, Wang D. , et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000; 21 (21) 2155-2161
  • 15 Hoemann CD, Hurtig M, Rossomacha E. , et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005; 87 (12) 2671-2686
  • 16 Wise JK, Alford AI, Goldstein SA, Stegemann JP. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering. Tissue Eng Part A 2014; 20 (1-2): 210-224
  • 17 Kohli N, Wright KT, Sammons RL, Jeys L, Snow M, Johnson WE. An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair. Cartilage 2015; 6 (04) 252-263