Thromb Haemost 1998; 79(05): 998-1003
DOI: 10.1055/s-0037-1615109
Review Article
Schattauer GmbH

Adhesion of ADP-activated Platelets to Intact Endothelium under Stagnation Point Flow In Vitro Is Mediated by the Integrin αIIbβ3[*]

Armin J. Reininger
1   From the Anatomisches Institut, Technische Universität München, München, Germany
,
Markus A. Korndörfer
1   From the Anatomisches Institut, Technische Universität München, München, Germany
,
Laurenz J. Wurzinger
1   From the Anatomisches Institut, Technische Universität München, München, Germany
› Author Affiliations
Further Information

Publication History

Received 14 November 1996

Accepted after resubmission 19 December 1997

Publication Date:
07 December 2017 (online)

Summary

As we demonstrated earlier, platelets adhere to intact endothelium provided they are activated and convectively transported against the endothelial surface. To identify the platelet receptors involved we superfused cultured endothelium with activated platelet rich plasma (PRP) by means of the Stagnation Point Flow Adhesio- Aggregometer while blocking various platelet receptors. Inhibition was performed with the tetrapeptide RGDS, the non-peptide Ro-43-8857, or a monoclonal antibody directed against integrin αIIbβ3. Platelet deposition was video-recorded and quantified by image analysis. Infusion of RGDS or Ro-43-8857 into ADP-stimulated PRP completely prevented adhesion as well as subsequent aggregation. Interrupting the inhibitor infusion while ADP stimulation persisted, prompted adhesion and aggregation, demonstrating the reversibility of the inhibition. Platelet adhesion was irreversibly blocked by preincubation of the PRP with the moab against αIIbβ3. Its specific binding was confirmed by immuno-electron microscopy. Our results suggest that platelet adhesion to intact endothelium is mediated via platelet integrin αIIbβ3.

* This work was presented in part (abstract) at the 40th Annual Meeting of the GTH (Gesellschaft für Thrombose- und Hämostaseforschung), Interlaken, Switzerland, February 1996; and is part of the doctoral thesis of M.A.K.


 
  • References

  • 1 Czervionke RL, Smith JB, Fry GL, Hoak JC, Haycraft DL. Inhibition of prostacyclin by treatment of endothelium with aspirin. Correlation with platelet adherence. J Clin Invest 1979; 63: 1089-92.
  • 2 Curwen KD, Gimbrone Jr. MA, Handin RI. In vitro studies of thromboresistance. The role of prostacyclin (PGI2) in platelet adhesion to cultured normal and virally transformed human vascular endothelial cells. Lab Invest 1980; 42: 366-74.
  • 3 Radomski MW, Plamer RMJ, Moncada S. Endogeneous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987; 1057-8.
  • 4 Darius H, Binz C, Veit K, Fisch A, Meyer J. Platelet receptor desensitization induced by elevated prostacyclin levels causes platelet-endothelial cell adhesion. J Am Coll Cardiol 1995; 26: 800-6.
  • 5 Li JM, Podolsky RS, Rohrer MJ, Cutler BS, Massie MT, Barnard MR, Michelson AD. Adhesion of activated platelets to venous endothelial cells is mediated via GPIIb/IIIa. J Surg Res 1996; 61: 543-8.
  • 6 Povlishock JT, Rosenblum WI, Sholley MM, Wei EP. An ultrastructural analysis of endothelial change paralleling platelet aggregation in a light/dye model of microvascular insult. Am J Pathol 1983; 110: 148-60.
  • 7 Said S, Rosenblum WI, Povlishock JT, Nelson GH. Correlation between morphological changes in platelet aggregates and underlying endothelial damage in cerebral microcirculation of mice. Stroke 1993; 24: 1968-76.
  • 8 Rosenblum WI, Nelson GH, Wormley B, Werner P, Wang JM, Shih CCY. Role of platelet-endothelial cell adhesion molecule (PECAM) in platelet adhesion aggregation over injured but not denuded endothelium in vivo and ex vivo. Stroke 1996; 27: 709-11.
  • 9 Radomski MW, Vallance P, Whitley G, Foxwell N, Moncada S. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res 1993; 27: 1380-2.
  • 10 Zwaginga JJ, Sixma JJ, De Groot PG. Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant. Arteriosclerosis 1990; 10: 49-61.
  • 11 Müller-Mohnssen H, Kratzer M, Baldauf W. Microthrombus formation in models of coronary arteries caused by stagnation point flow arising at the predilection sites of atherosclerosis and thrombosis. In: The Role of Fluid Mechanics in Atherosclerosis. Conference Proceedings. Nerem RM, Cornhill FJ. eds. Columbus, Ohio: 1978: 12-1-12-8.
  • 12 Wurzinger LJ, Blasberg P, Schmid-Schönbein H. Towards a concept of thrombosis in accelerated flow: rheology, fluid dynamics, and biochemistry. Biorheology 1985; 22: 437-49.
  • 13 Reininger AJ, Reininger CB, Wurzinger LJ. The influence of fluid dynamics upon adhesion of ADP-stimulated human platelets to endothelial cells. Thromb Res 1993; 71: 245-9.
  • 14 Reininger CB, Reininger AJ, Graf J, Eibl-Eibesfeldt BI, Steckmeier B. Real-time analysis of platelet adhesion under stagnation point flow conditions: The effect of red blood cells and glycoprotein IIb/IIIa receptor blockade. J Vasc Invest 1996; 2: 1-11.
  • 15 Jaffe EA, Nachmann RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins: Identification of morphology and immunologic criteria. J Clin Invest 1973; 52: 2745-56.
  • 16 Cheresh DA, Berliner SA, Vicente V, Ruggeri ZM. Recognition of distinct adhesive sites on fibrinogen by related integrins on platelet and endothelial cells. Cell 1989; 58: 945-53.
  • 17 Lefkovits J, Plow EF, Topol E. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. New Engl J Med 1995; 332: 1553-9.
  • 18 Alig L, Edenhofer A, Hadvary P, Hurzeler M, Knopp D, Muller M, Steiner B, Trzeciak A, Weller T. Low molecular weight, non-peptide fibrinogen receptor antagonist. J Med Chem 1992; 35: 4393-407.
  • 19 Bailly AL, Laurent A, Lu H, Elalami I, Jacob P, Mundler O, Merland JJ, Lautier A, Soria J, Soria C. Fibrinogen binding and platelet retention: Relationship with the thrombogenicity of catheters. J Biomed Mater Res 1996; 30: 101-8.
  • 20 Timm M, Kaski JC, Dashwood MR. Endothelin-like immunoreactivity in atherosclerotic human coronary arteries. J Cardiovasc Pharmacol 1995; 26 (Suppl. 03) S442-S444.
  • 21 Eberth JC, Schimmelbusch C. Experimentelle Untersuchungen über Thrombose. Virchow’s Archiv 1886; 103: 39-87.
  • 22 Aschoff L. Thrombose und Sandbankbildung. Ziegler, Beiträge zur path Anat 1912; 52: 205-12.
  • 23 Müller-Mohnssen H. Die Strömungsverhältnisse in den Coronararterien und ihre Bedeutung für die Manifestierung der Coronarsklerose. Bad Oeynhauser Gespräche II 1958; 179-96.
  • 24 Goldsmith HL. Blood flow and thrombosis. Thrombos Diathes haemorrh 1974; 32: 35-48.
  • 25 Charo IF, Kiefer N, Phillips DR. Platelet Membrane Glycoproteins. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. Philadelphia, J: B. Lippincott,; 1994: 489-507.
  • 26 Savage B, Bottini E, Ruggeri ZM. Interaction of integrin αIIbβ3 with multiple fibrinogen domains during platelet adhesion. J Biol Chem 1995; 270: 28812-7.
  • 27 Hawiger J. Adhesive Interactions of Blood Cells and the Vascular Wall. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. Philadelphia, J: B. Lippincott,; 1994: 762-96.
  • 28 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-97.
  • 29 Wu YP, Van Breugel HHFI, Lankhof H, Wise RJ, Handin RI, De Groot PG, Sixma JJ. Platelet adhesion to multimeric and dimeric von Willebrand factor and to collagen type III preincubated with von Willebrand factor. Arterioscler Thromb Vasc Biol 1996; 16: 611-20.
  • 30 Ruggeri ZM. Mechanisms of shear-induced platelet adhesion and aggregation. Thromb Haemost 1993; 70: 119-23.
  • 31 Coller BS. Blockade of platelet GPIIb/IIIa receptors as an antithrombotic strategy. Circulation 1995; 92: 2373-80.