Thromb Haemost 2000; 83(01): 119-126
DOI: 10.1055/s-0037-1613767
Commentary
Schattauer GmbH

Glycoprotein Ib-binding Protein from the Venom of Deinagkistrodon acutus – cDNA Sequence, Functional Characterization, and Three-Dimensional Modeling

Yuh-Ling Chen
1   From the Institute of Biological Chemistry
,
Kuo-Wei Tsai
1   From the Institute of Biological Chemistry
,
Tschining Chang
1   From the Institute of Biological Chemistry
,
Tse-Ming Hong
2   Institute of Biomedical Sciences, Academia Sinica
,
Inn-Ho Tsai
1   From the Institute of Biological Chemistry
3   Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, Republic of China
› Author Affiliations
Further Information

Publication History

Received 12 July 1999

Accepted after revision 23 September 1999

Publication Date:
06 December 2017 (online)

Summary

Agkicetin-C, a potent glycoprotein Ib antagonist from the venom of the Chinese pit viper, Deinagkistrodon acutus, has been purified and characterized (5). It is a disulfide-linked heterodimer containing subunits of 132 and of 123 amino acid residues. Herein, the complete amino acid sequences were resolved by cloning and nucleotide sequencing of the cDNAs. The sequences of its subunits are homologous to those of other snake venom proteins of the C-type (Ca2+-dependent) lectin superfamily. A three-dimensional model of agkicetin-C was constructed based on the crystal structure of habu coagulation factor IX/X-binding protein. By careful alignment of all the related sequences available and comparing the 3D-model of agkicetin-C with structures of other homologous proteins of different functions, some variable residues of agkicetin-C were identified, which possibly are responsible for the specificity of this distinct subtype of the C-type lectin-like venom proteins.

 
  • References

  • 1 Ware J. Molecular analyses of the platelet glycoprotein Ib-IX-V receptor. Thromb Haemost 1998; 79: 466-78.
  • 2 Fujimura Y, Kawasaki T, Titani K. Snake venom proteins modulating the interaction between von Willebrand factor and platelet glycoprotein Ib. Thromb Haemost 1996; 76: 633-9.
  • 3 Peng M, Lu W, Kirby EP. Alboaggregin-B: a new platelet agonist that binds to platelet membrane glycoprotein Ib. Biochemistry 1991; 30: 11529-36.
  • 4 Peng M, Lu W, Beviglia L, Niewiarowski S, Kirby EP. Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood 1993; 81: 2321-8.
  • 5 Chen YL, Tsai IH. Functional and sequence characterization of agkicetin, a new glycoprotein Ib antagonist isolated from Agkistrodon acutus venom. Biochem Biophys Res Commun 1995; 210: 472-7.
  • 6 Fujimura Y, Ikeda Y, Miura S, Yoshida E, Shima H, Nishida S, Suzuki M, Titani K, Taniuchi Y, Kawasaki T. Isolation and characterization of jararaca GPIb-BP, a snake venom antagonist specific to platelet glycoprotein Ib. Thromb Haemost 1995; 74: 743-50.
  • 7 Kawasaki T, Taniuchi Y, Hisamichi N, Fujimura Y, Suzuki M, Titani K, Sakai Y, Kaku S, Satoh N, Takenaka T, Handa M, Sawai Y. Tokaracetin, a new platelet antagonist that binds to platelet glycoprotein ib and inhibits von Willebrand factor-dependent shear-induced platelet aggregation. Biochem J 1995; 308: 947-53.
  • 8 Andrews RK, Kroll MH, Ward CM, Rose JW, Scarborough RM, Smith AI, Lopez JA, Berndt MC. Binding of a novel 50-kilodalton alboaggregin from Trimeresurus albolabris and related viper venom proteins to the platelet membrane glycoprotein Ib-IX-V complex Effect on platelet aggregation and glycoprotein Ib-mediated platelet activation. Biochemistry 1996; 35: 12629-39.
  • 9 Sakurai Y, Fujimura Y, Kokubo T, Imamura K, Kawasaki T, Handa M, Suzuki M, Matsui T, Titani K, Yoshioka A. The cDNA cloning and molecular characterization of a snake venom platelet glycoprotein Ib-binding protein, mamushigin, from Agkistrodon halys blomhoffii venom. Thromb Haemost 1998; 79: 1199-207.
  • 10 Chang MC, Lin HK, Peng HC, Huang TF. Antithrombotic effect of crotalin, a platelet membrane glycoprotein Ib antagonist from venom of Crotalus atrox . Blood 1998; 91: 1582-9.
  • 11 Drickamer K. Evolution of Ca(2+)-dependent animal lectins. Prog Nucleic Acid Res Mol Biol 1993; 45: 207-32.
  • 12 Orelle B, Keim V, Masciotra L, Dagorn JC, Iovanna JL. Human pancreatitis-associated protein Messenger RNA cloning and expression in pancreatic diseases. J Clin Invest 1992; 90: 2284-91.
  • 13 Giorgi D, Bernard JP, Rouquier S, Iovanna J, Sarles H, Dagorn JC. Secretory pancreatic stone protein messenger RNA Nucleotide sequence and expression in chronic calcifying pancreatitis. J Clin Invest 1989; 84: 100-6.
  • 14 Sekiya F, Atoda H, Morita T. Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops jararaca . Biochemistry 1993; 32: 6892-7.
  • 15 Fujimura Y, Titani K, Usami Y, Suzuki M, Oyama R, Matsui T, Fukui H, Sugimoto M, Ruggeri ZM. Isolation and chemical characterization of two structurally and functionally distinct forms of botrocetin, the platelet coagulatinin isolated from the venom of Bothrops jararaca . Biochemistry 1991; 30: 1957-64.
  • 16 Zingali RB, Jandrot-Perrus M, Guillin MC, Bon C. Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition. Biochemistry 1993; 32: 10794-802.
  • 17 Mizuno H, Fujimoto Z, Koizum M, Kano H, Atoda H, Morita T. Structure of coagulation factors IX/X-binding protein, a heterodimer of C-type lectin domains. Nature Struc Biol 1997; 04: 438-41.
  • 18 Chong BH, Fawaz I, Chesterman CC, Berndt MC. Heparin-induced thrombocytopenia: mechanism of interaction of the heparin-dependent antibody with platelets. Br J Haemat 1989; 73: 235-40.
  • 19 Fujimura Y, Titani K, Lolland LZ, Russell SR, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS. Von Willebrand factor A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 1986; 261: 381-5.
  • 20 Bolton AE, Hunter WM. The labeling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 1973; 133: 529-39.
  • 21 Ozols J. Amino acid analysis. Methods Enzymol 1990; 182: 587-601.
  • 22 Chen YL, Tsai IH. Functional and sequence characterization of coagulation factor IX/factor X-binding protein from the venom of Echis carinatus leucogaster . Biochemistry 1996; 35: 5264-71.
  • 23 Hunkapiller MW, Hewick RM, Dreyer WJ, Hood LE. High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol 1983; 91: 399-412.
  • 24 Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979; 18: 5294-9.
  • 25 Aviv H, Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci USA 1972; 69: 1408-12.
  • 26 Matsuzaki R, Yoshiara E, Yamada M, Shima K, Atoda H, Morita T. cDNA cloning of IX/X-BP, a heterogeneous two-chain anticoagulant protein from snake venom. Biochem Biophys Res Commun 1996; 220: 382-7.
  • 27 Sˇali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779-815.
  • 28 Bower MJ, Cohen FE, Dunbrack Jr RL. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 1997; 267: 1268-82.
  • 29 Vinals C, De Bolle X, Depiereux E, Feytmans E. Knowledge-based modeling of the D-lactate dehydrogenase three-dimensional structure. Proteins 1995; 21: 307-18.
  • 30 Laskowski RA, Moss DS, Thornton JM. Main-chain bond lengths and bond angles in protein structures. J Mol Biol 1993; 231: 1049-67.
  • 31 Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 08: 52-6.
  • 32 Luthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature 1992; 356: 83-5.
  • 33 Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995; 268: 1144-9.
  • 34 Cooper HA, Wilkins Jr KW, Johnson Jr PR, Wagner RH. Platelet-aggregating factor and the aggregation of fixed washed platelets. J Lab Clin Med 1977; 90: 512-21.
  • 35 Hoylaerts MF, Nuyts K, Peerlinck K, Deckmyn H, Vermylen J. Promotion of binding of von Willebrand factor to platelet glycoprotein Ib by dimers of ristocetin. Biochem J 1995; 306: 454-63.
  • 36 Chang LS, Lin J, Chou YC, Hong E. Genomic structures of cardiotoxin 4 and cobrotoxin from Naja naja atra (Taiwan cobra). Biochem Biophys Res Commun 1997; 239: 756-62.
  • 37 Deshimaru M, Ogawa T, Nakashima K, Nobuhisa I, Chijiwa T, Shimohigashi Y, Fukumaki Y, Niwa M, Yamashina I, Hattori S, Ohno M. Accelerated evolution of Crotalinae snake venom gland serine proteases. FEBS Lett 1996; 397: 83-8.
  • 38 Atoda H, Ishikawa M, Mizuno H, Morita T. Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a Gla domain-binding protein. Biochemistry 1998; 37: 17361-70.
  • 39 Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 1991; 254: 1608-15.
  • 40 Weis WI, Drickamer K, Hendrickson WA. Structure of a C-type mannosebinding protein complexed with an oligosaccharide. Nature 1992; 360: 127-34.
  • 41 Peng M, Holt JC, Niewiarowski S. Isolation, characterization and amino acid sequence of echicetin beta subunit, a specific inhibitor of von Willebrand factor and thrombin interaction with glycoprotein Ib. Biochem Biophys Res Commun 1994; 205: 68-72.
  • 42 Polgar J, Magnenat EM, Peitsch MC, Wells TNC, Saqi MSA, Clemetson KJ. Amino acid sequence of the alpha subunit and computer modeling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper). Biochem J 1997; 323: 533-7.
  • 43 Kawasaki T, Fujimura Y, Usami Y, Suzuki M, Miura S, Sakurai Y, Makita K, Taniuchi Y, Hirano K, Titani K. Complete amino acid sequence and identification of the platelet glycoprotein Ib-binding site of jararaca GPIb-BP, a snake venom protein isolated from Bothrops jararaca . J Biol Chem 1996; 271: 10635-9.
  • 44 Usami Y, Suzuki M, Yoshida E, Sakurai Y, Hirano K, Kawasaki T, Fujimura Y, Titani K. Primary structure of alboaggregin-B purified from the venom of Trimeresurus albolabris . Biochem Biophys Res Commun 1996; 219: 727-33.
  • 45 Usami Y, Fujimura Y, Suzuki M, Ozeki Y, Nishio K, Fukui H, Titani K. Primary structure of two-chain botrocetin, a von Willebrand factor modulator purified from the venom of Bothrops jararaca . Proc Natl Acad Sci USA 1993; 90: 928-32.
  • 46 Arocas V, Castro HC, Zingali RB, Guillin MC, Jandrot-Perrus M, Bon C, Wisner A. Molecular cloning and expression of bothrojaracin, a potent thrombin inhibitor from snake venom. Eur J Biochem 1997; 248: 550-7.
  • 47 Leduc M, Bon C. Cloning of subunits of convulxin, a collagen-like plateletaggregating protein from Crotalus durissus terrificus venom. Biochem J 1998; 333: 389-93.
  • 48 Atoda H, Hyuga M, Morita T. The primary structure of coagulation factor IX/factor X-binding protein isolated from the venom of Trimeresurus flavoviridis. Homology with asialoglycoprotein receptors, proteoglycan core protein, tetranectin, and lymphocyte Fc epsilon receptor for immunoglobulin E. J Biol Chem 1991; 266: 14903-11.