Thromb Haemost 2003; 89(03): 409-419
DOI: 10.1055/s-0037-1613368
Review Article
Schattauer GmbH

Molecular mechanisms of initiation of fibrinolysis by fibrin

Leonid Medved
1   Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, Maryland, U.S.A
,
Willem Nieuwenhuizen
2   Gaubius Laboratory, TNO Prevention and Health, Leiden, The Netherlands
› Author Affiliations
Financial support: This work was supported by the National Institute of Health Grant HL-56051 (to L. M.).
Further Information

Publication History

Received 31 October 2002

Accepted after revision 03 January 2003

Publication Date:
09 December 2017 (online)

Summary

Fibrinogen is rather inert in the circulation, however, after conversion into fibrin it participates in various physiological processes including fibrinolysis. Initiation of fibrinolysis occurs through a number of orchestrated interactions between fibrin, plasminogen and its activator tPA which result in generation of plasmin. Numerous studies localized a set of specific low affinity tPA- and plasminogen-binding sites in each D region of fibrin(ogen). The tPA-binding site includes residues γ312-324 and the plasminogen-binding site includes residues Aα148-160; they bind tPA and plasminogen with a Kd of about 1 μM. Another set of high affinity tPA- and plasminogen-binding sites (Kds = 16-33 nM) was identified in the compact portion of each fibrin(ogen) αC-domain within residues Aα392-610. All these sites are cryptic in fibrinogen and become exposed in fibrin. Recent studies with recombinant and proteolytic fibrin(ogen) fragments clarified the molecular mechanisms by which these sites become exposed. Namely, upon fibrin assembly, the interaction between the D and E regions causes conformational changes in the former that expose the low affinity binding sites. The exposure of the high affinity binding sites in the αC-domains is connected most probably with their switch from an intramolecular interaction in fibrinogen to an intermolecular one in fibrin. These mechanisms serve to minimize degradation of circulating fibrinogen and confine fibrinolysis to places of fibrin deposition.

 
  • References

  • 1 Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost 1999; 82: 259-70.
  • 2 Lijnen HR. Elements of the fibrinolytic system. Ann NY Acad Sci 2001; 936: 226-36.
  • 3 Suenson E, Bjerrum P, Holm A, Lind B, Meldal M, Selmer J, Petersen L. The role of fragment X polymers in the fibrin enhancement of tissue plasminogen activator-catalyzed plasmin formation. J Biol Chem 1990; 265: 22228-37.
  • 4 Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann NY Acad Sci 2001; 936: 237-46.
  • 5 Medved L, Tsurupa G, Yakovlev S. Conformational changes upon conversion of fibrinogen into fibrin: the mechanisms of exposure of some cryptic sites. Ann NY Acad Sci 2001; 936: 185-204.
  • 6 Doolittle RF. Fibrinogen and fibrin. Annu Rev Biochem 1984; 53: 195-229.
  • 7 Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Blood Coagulation. Zwaal, Hemker, eds: Elsevier Science Publishers 1986; 171-241.
  • 8 Privalov PL, Medved LV. Domains in the fibrinogen molecule. J Mol Biol 1982; 159: 665-83.
  • 9 Medved LV, Gorkun OV, Privalov PL. Structural organization of C-terminal parts of fibrinogen A-chains. FEBS Lett 1983; 160: 291-5.
  • 10 Medved L, Litvinovich S, Ugarova T, Matsuka Y, Ingham K. Domain structure, stability and functional activity of the recombinant human fibrinogen-module (148-411). Biochemistry 1997; 36: 4685-93.
  • 11 Hall C, Slayter H. The fibrinogen molecule: its size, shape and mode of polymerization. J Biophys Biochem Cytology 1959; 5: 11-6.
  • 12 Erickson HP, Fowler WE. Electron microscopy of fibrinogen, its plasmic fragments and polymers. Ann NY Acad Sci 1983; 408: 146-63.
  • 13 Weisel JW, Stauffacher CV, Bullit E, Cohen C. A model for fibrinogen: domains and sequence. Science 1985; 230: 1388-91.
  • 14 Weisel JW, Medved L. The structure and functions of the C domains of fibrinogen. Ann NY Acad Sci 2001; 936: 312-27.
  • 15 Tsurupa G, Tsonev L, Medved L. Structural organization of the fibrin(ogen) C-domain. Biochemistry 2002; 41: 6449-59.
  • 16 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389: 455-62.
  • 17 Brown JH, Volkmann N, Jun G, Henschen-Edman AH, Cohen C. The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci USA 2000; 97: 85-90.
  • 18 Yang Z, Kollman JM, Pandi L, Doolittle RF. Crystal structure of native chicken fibrinogen at 2.7 Å resolution. Biochemistry 2001; 40: 12515-23.
  • 19 Doolittle RF, Yang Z, Mochalkin I. Crystal structure studies on fibrinogen and fibrin. Ann NY Acad Sci 2001; 936: 31-43.
  • 20 Medved LV, Gorkun OV, Manyakov VP, Belitser VA. The role of fibrinogen C-domains in the fibrin assembly process. FEBS Lett 1985; 181: 109-12.
  • 21 Gorkun OV, Veklich I Y, Medved LV, Henschen AH, Weisel JW. Role of the C domains of fibrin in clot formation. Biochemistry 1994; 33: 6986-97.
  • 22 Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann NY Acad Sci 2001; 936: 11-30.
  • 23 Ponting CP, Marshall JM, Cederholm-Williams SA. Plasminogen: a structural review. Blood Coagul Fibrinolysis 1992; 3: 605-614.
  • 24 Robbins KC, Summaria L, Hsien B, Shah RJ. The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 1967; 242: 2333-42.
  • 25 van Zonneveld AJ, Veerman H, McDonald ME, van Mourik JA, Pannekoek H. Structure and function of human tissue-type plasminogen activator (t-PA). J Cell Biochem 1986; 32: 169-78.
  • 26 Loscalzo J. Structural and kinetic comparison of recombinant human single-and two-chain tissue plasminogen activator. J Clin Invest 1988; 82: 1391-7.
  • 27 Thorsen S, Clemmensen I, Sottrup-Jensen L, Magnusson S. Adsorption to fibrin of native fragments of known primary structure from human plasminogen. Biochim Biophys Acta 1981; 668: 377-87.
  • 28 Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL, Shi GY. Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem 1990; 265: 19658-64.
  • 29 Verheijen JH, Caspers MP, Chang GT, de Munk GA, Pouwels PH, Enger-Valk BE. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J 1986; 5: 3525-30.
  • 30 van Zonneveld AJ, Veerman H, Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. Inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid. J Biol Chem 1986; 261: 14214-8.
  • 31 Marder VJ, Francis CW. Plasmin degradation of cross-linked fibrin. Ann NY Acad Sci 1983; 408: 397-406.
  • 32 Budzynski AZ. Fibrinogen and fibrin: biochemistry and pathophysiology. Crit Rev Oncol Hematol 1986; 6: 97-146.
  • 33 Fleury V, Angles-Cano E. Characterization of the binding of plasminogen to fibrin surfaces: the role of carboxy-terminal lysines. Biochemistry 1991; 30: 7630-8.
  • 34 Wallen P. Activation of plasminogen with urokinase and tissue activator. In: Thrombosis and urokinase. Paoletti, Sherry, eds: Academic Press, New York 1977; 9: 91-102.
  • 35 Allen RA, Pepper DS. Isolation and properties of human vascular plasminogen activator. Thromb Haemost 1981; 45: 43-50.
  • 36 Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen. J Biol Chem 1982; 2912-9.
  • 37 Verheijen JH, Nieuwenhuizen W, Wijngaards G. Activation of plasminogen by tissue activator is increased specifically in the presence of certain soluble fibrin(ogen) fragments. Thromb Res 1982; 27: 377-85.
  • 38 Nieuwenhuizen W, Vermond A, Voskuilen M, Traas DW, Verheijen JH. Identification of a site in fibrin(ogen) which is involved in the acceleration of plasminogen activation by tissue-type plasminogen activator. Biochim Biophys Acta 1983; 748: 86-92.
  • 39 Nieuwenhuizen W, Verheijen JH, Vermond A, Chang GT. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2. Biochim Biophys Acta 1983; 755: 531-3.
  • 40 Yonekawa O, Voskuilen M, Nieuwenhuizen W. Localization in the fibrinogen γ-chain of a new site that is involved in the acceleration of the tissue-type plasminogen activator-catalysed activation of plasminogen. Biochem J 1992; 283: 187-91.
  • 41 Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue Aα 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem 1987; 262: 5944-6.
  • 42 Schielen WJ, Voskuilen M, Adams PJ, Tesser I G, Nieuwenhuizen W. Structural requirements of fibrinogen Aα-(148-160) for the enhancement of the rate of plasminogen activation by tPA. Blood Coagul Fibrinolysis 1990; 1: 521-4.
  • 43 Schielen JG, Adams HP, Voskuilen M, Tesser GJ, Nieuwenhuizen W. Structural requirements of position Aα-157 in fibrinogen for the fibrin-induced rate enhancement of the activation of plasminogen by tissue-type plasminogen activator. Biochem J 1991; 276: 655-9.
  • 44 Schielen JG, Adams HP, Voskuilen M, Tesser GJ, Nieuwenhuizen W. The role of 152Val of the fibrinogen Aα-chain in the fibrin-induced rate enhancement of the activation of plasminogen by tissue-type plasminogen activator. Fibrinolysis 1993; 7: 63-7.
  • 45 Schielen WJ, Adams HP, Voskuilen M, Tesser I G, Nieuwenhuizen W. The sequence Aα-(154-159) of fibrinogen is capable of accelerating the t-PA catalysed activation of plasminogen. Blood Coagul Fibrinolysis 1991; 2: 465-70.
  • 46 Schielen WJ, Voskuilen M, Tesser I G, Nieuwenhuizen W. The sequence Aα-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci USA 1989; 86: 8951-4.
  • 47 Bosma PJ, Rijken DC, Nieuwenhuizen W. Binding of tissue-type plasminogen activator to fibrinogen fragments. Eur J Biochem 1988; 172: 399-404.
  • 48 Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L. Conversion of fibrinogen to fibrin: the mechanism of exposure of tPA-and plasminogen-binding sites. Biochemistry 2000; 39: 15730-41.
  • 49 Lezen I T, Kudinov SA, Medved LV. Plasminogen binding site of the thermostable region of fibrinogen fragment D. FEBS Lett 1986; 197: 59-62.
  • 50 Grailhe P, Nieuwenhuizen W, Angles-Cano E. Study of tissue-type plasminogen activator binding sites on fibrin using distinct fragments of fibrinogen. Eur J Biochem 1994; 219: 961-7.
  • 51 Schielen WJ, Adams HP, van Leuven K, Voskuilen M, Tesser I G, Nieuwenhuizen W. The sequence γ-(312-324) is a fibrin-specific epitope. Blood 1991; 77: 2169-73.
  • 52 Varadi A, Patthy L. Location of plasminogen-binding sites in human fibrin(ogen). Biochemistry 1983; 22: 2440-6.
  • 53 Weisel JW, Nagaswami C, Korsholm B, Petersen LC, Suenson E. Interactions of plasminogen with polymerized fibrin and its derivatives, monitored with photoaffinity cross-linker and electron microscopy. J Mol Biol 1994; 235: 1117-35.
  • 54 Lijnen HR, Soria J, Soria C, Collen D, Caen JP. Dysfibrinogenemia (fibrinogen Dusard) associated with impaired fibrin-enhanced plasminogen activation. Thromb Haemost 1984; 51: 108-9.
  • 55 Koopman J, Haverkate F, Grimbergen J, Egbring R, Lord ST. Fibrinogen Marburg: a homozygous case of dysfibrinogenemia, lacking amino acids Aα 461-610. (Lys 461 AAA → stop TAA). Blood 1992; 80: 1972-9.
  • 56 Koopman J, Haverkate F, Grimbergen J, Lord ST, Mosesson MW, DiOrio JP, Siebenlist KS, Legrand C, Soria J, Soria C, Collen D, Caen JP. Molecular basis for fibrinogen Dusard (Aα 554 Arg → Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest 1993; 91: 1637-43.
  • 57 Bach-Gansmo ET, Halvorsen S, Godal HC, Skjonsberg OH. Degradation of the α-chain of fibrin by human neutrophil elastase reduces the stimulating effect of fibrin on plasminogen activation. Thromb Res 1994; 75: 307-17.
  • 58 Tsurupa G, Medved L. Identification and characterization of novel tPA-and plasminogen-binding sites within fibrin(ogen) αC-domains. Biochemistry 2001; 40: 801-8.
  • 59 Varadi A, Patthy L. β(Leu121-Lys122) segment of fibrinogen is in a region essential for plasminogen binding by fibrin fragment E. Biochemistry 1984; 23: 2108-12.
  • 60 Hasan AAK, Chang WS, Budzynsky AZ. Binding of fibrin fragments to one-chain and two-chain tissue-type plasminogen activator. Blood 1992; 79: 2313-21.
  • 61 Weitz I J, Leslie B, Ginsberg J. Soluble fibrin degradation products potentiate tissue plasminogen activator-induced fibrinogen proteolysis. J Clin Invest 1991; 87: 1082-90.
  • 62 de Serrano VS, Urano T, Gaffney PJ, Castellino FJ. Influence of various structural domains of fibrinogen and fibrin on the potentiation of plasminogen activation by recombinant tissue plasminogen activator. J Prot Chem 1989; 8: 61-77.
  • 63 Nieuwenhuizen W, Hoegee-De Nobel E, Laterveer R. A rapid monoclonal antibody-based enzyme immunoassay (EIA) for the quantitative determination of soluble fibrin in plasma. Thromb Haemost 1992; 68: 273-7.
  • 64 Suenson E, Petersen LC. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator. Biochim Biophys Acta 1986; 870: 510-9.
  • 65 Koopman J, Engesser L, Nieveen M, Nieveen M, Haverkate F, Brommer EJP. Fibrin polymerization associated with tissue-type plasminogen activator (t-PA) induced gluplasminogen activation. In: Fibrinogen and its derivatives. Muller-Berghaus, Scheefers-Borchel, Selmayr, Henschen-Edman, eds: Elsevier, Amsterdam 1986; 315-8.
  • 66 Kaczmarek E, Lee MH, McDonagh J. Initial interaction between fibrin and tissue plasminogen activator (t-PA). The Gly-Pro-Arg-Pro binding site on fibrin(ogen) is important for t-PA activity. J Biol Chem 1993; 268: 2474-9.
  • 67 Haddeland U, Sletten K, Bennick A, Nieuwenhuizen W, Brosstad F. Aggregated, conformationally changed fibrinogen exposes the stimulating sites for t-PA-catalysed plasminogen activation. Thromb Haemost 1996; 75: 326-31.
  • 68 Mosesson MW, Siebenlist KR, Voskuilen M, Nieuwenhuizen W. Evaluation of the factors contributing to fibrin-dependent plasminogen activation. Thromb Haemost 1998; 79: 796-801.
  • 69 Moskowitz KA, Budzynski AZ. The (DD)E complex is maintained by composite fibrin polymerization site. Biochemistry 1994; 33: 12937-44.
  • 70 Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 2000; 97: 14156-61.
  • 71 Weisel JW, Veklich Y, Gorkun O. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J Mol Biol 1993; 232: 285-97.
  • 72 Christensen U. C-terminal lysine residues of fibrinogen fragments essential for binding to plasminogen. FEBS Letters 1985; 182: 43-6.
  • 73 Suenson E, Thorsen S. The course and prerequisites of Lys-plasminogen formation during fibrinolysis. Biochemistry 1988; 27: 2435-43.
  • 74 Higgins DL, Vehar GA. Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin. Biochemistry 1987; 26: 7786-91.
  • 75 Husain SS, Hasan AAK, Budzynski AZ. Differences between binding of one-chain and two-chain tissue plasminogen activators to non-cross-linked and cross-linked fibrin clots. Blood 1989; 74: 999-1006.
  • 76 Bauer R, Hansen SL, Jones J, Suenson E, Thorsen S, Ogendal L. Fibrin structures during tissue-type plasminogen activator-mediated fibrinolysis studied by laser light scattering: relation to fibrin enhancement of plasminogen activation. Eur Biophys J 1994; 23: 239-52.
  • 77 Olexa SA, Budzynski AZ, Doolittle RF, Cottrell BA, Greene TC. Structure of fragment E species from human cross-linked fibrin. Biochemistry 1981; 20: 6139-45.