Synthesis 2019; 51(22): 4113-4136
DOI: 10.1055/s-0037-1611910
review
© Georg Thieme Verlag Stuttgart · New York

Recent Developments in Direct C–H Functionalization of Quinoxalin-2(1H)-ones via Radical Addition Processes

a   Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Mahendergarh-123031, Haryana, India
,
a   Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Mahendergarh-123031, Haryana, India
b   Discipline of Chemistry, Indian Institute of Technology Indore, Simrol Indore-453552, Madhya Pradesh, India   eMail: selva@iiti.ac.in
› Institutsangaben
M. thanks the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for a research fellowship. S.S. thanks the Scientific and Engineering Research Board (SERB), New Delhi, India (ECR/2018/000413) for financial support and the University Grants Commission (UGC), New Delhi, for a UGC-FRP faculty award [F.4-5(3-FRP)/2017(BSR)].
Weitere Informationen

Publikationsverlauf

Received: 15. Juni 2019

Accepted after revision: 22. Juli 2019

Publikationsdatum:
24. September 2019 (online)


Dedicated to Professor Vinod K. Singh, IIT Kanpur on the occasion of his 60th birthday

Abstract

This review article covers the recent developments in direct C–H functionalization of quinoxalin-2(1H)-one derivatives via radical additions at the C3 position. Reaction types have been categorized depending on the kind of radical used, with representative examples and insightful mechanistic details provided.

1 Introduction

2 Reactions with Alkyl Radicals

3 Reactions with Acyl Radicals

4 Reactions with Aryl Radicals

5 Reactions with Perfluoroalkyl Radicals

6 Reactions with Alkoxycarbonyl Radicals

7 Reactions with Nitrogen Radicals

8 Reactions with Oxygen Radicals

9 Reactions with Phosphorus Radicals

10 Conclusion

 
  • References

    • 1a El-Hawash SA. M, Habib NS, Kassem MA. Arch. Pharm. 2006; 339: 564
    • 1b Liu R, Huang Z.-H, Murray MG, Guo X.-Y, Liu G. J. Med. Chem. 2011; 54: 5747
    • 1c Qin X, Hao X, Han H, Zhu S, Yang Y, Wu B, Hussain S, Parveen S, Jing C, Ma B, Zhu C. J. Med. Chem. 2015; 58: 1254
    • 2a Lawrence DS, Copper JE, Smith CD. J. Med. Chem. 2001; 44: 594
    • 2b Willardsen JA, Dudley DA, Cody WL, Chi L, McClanahan TB, Mertz TE, Potoczak RE, Narasimhan LS, Holland DR, Rapundalo ST, Edmunds JJ. J. Med. Chem. 2004; 47: 4089
    • 2c Meyer E, Joussef AC, de Souza LB. P. Synth. Commun. 2006; 36: 729
    • 2d Kawanishi N, Sugimoto T, Shibata J, Nakamura K, Masutani K, Ikuta M, Hirai H. Bioorg. Med. Chem. Lett. 2006; 16: 5122
    • 2e Aoki K, Koseki J.-i, Takeda S, Aburada M, Miyamoto K.-i. Chem. Pharm. Bull. 2007; 55: 922
    • 2f Aoki K, Obata T, Yamazaki Y, Mori Y, Hirokawa H, Koseki J.-i, Hattori T, Niitsu K, Takeda S, Aburada M, Miyamoto K.-i. Chem. Pharm. Bull. 2007; 55: 255
    • 2g Kánai K, Arányi P, Böcskei Z, Ferenczy G, Harmat V, Simon K, Bátori S, Náray-Szabó G, Hermecz I. J. Med. Chem. 2008; 51: 7514
    • 2h Koltun DO, Parkhill EQ, Vasilevich NI, Glushkov AI, Zilbershtein TM, Ivanov AV, Cole AG, Henderson I, Zautke NA, Brunn SA, Mollova N, Leung K, Chisholm JW, Zablocki J. Bioorg. Med. Chem. Lett. 2009; 19: 2048
    • 2i Weïwer M, Spoonamore J, Wei J, Guichard B, Ross NT, Masson K, Silkworth W, Dandapani S, Palmer M, Scherer CA, Stern AM, Schreiber SL, Munoz B. ACS Med. Chem. Lett. 2012; 3: 1034
    • 2j Cil O, Phuan P.-W, Lee S, Tan J, Haggie PM, Levin MH, Sun L, Thiagarajah JR, Ma T, Verkman AS. Cell. Mol. Gastroenterol. Hepatol. 2016; 2: 317
  • 3 Quinn J, Guo C, Ko L, Sun B, He Y, Li Y. RSC Adv. 2016; 6: 22043
    • 4a Shaw AY, Denning CR, Hulme C. Synthesis 2013; 45: 459
    • 4b Sagadevan A, Ragupathi A, Hwang KC. Photochem. Photobiol. Sci. 2013; 12: 2110
    • 4c Krupková S, Funk P, Soural M, Hlavác J. ACS Comb. Sci. 2013; 15: 20
    • 4d Gräßle S, Vanderheiden S, Hodapp P, Bulat B, Nieger M, Jung N, Bräse S. Org. Lett. 2016; 18: 3598
    • 5a Carrer A, Brion J.-D, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606
    • 5b Li Y, Gao M, Wang L, Cui X. Org. Biomol. Chem. 2016; 14: 8428
    • 5c Hoang TT, To TA, Cao VT. T, Nguyen AT, Phan NT. S. Catal. Commun. 2017; 101: 20
  • 6 During the preparation of this review article, Yan and co-workers published a review article on recent advances in direct functionalization of quinoxalin-2(1H)-ones: Ke Q, Yan G, Wu X. Org. Biomol. Chem. 2019; 17: 5863
    • 7a Minisci F, Bernardi R, Bertini F, Galli R, Perchinunno M. Tetrahedron 1971; 27: 3575
    • 7b Minisci F, Fontana F, Vismara E. J. Heterocycl. Chem. 1990; 27: 79
  • 8 Boivin J, Fouquet E, Zard SZ. J. Am. Chem. Soc. 1991; 113: 1055

    • For selected examples, see:
    • 9a Nishimura T, Yoshinaka T, Nishiguchi Y, Maeda Y, Uemura S. Org. Lett. 2005; 7: 2425
    • 9b Yang H.-B, Selander N. Chem. Eur. J. 2017; 23: 1779
    • 9c Zhao B, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 12727
    • 9d Li L.-Y, Chen H.-G, Mei M.-J, Zhou L. Chem. Commun. 2017; 53: 11544
    • 9e Yang H.-B, Pathipati SR, Selander N. ACS Catal. 2017; 7: 8441
    • 9f Dauncey EM, Morcillo SP, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 744
    • 9g Yu X.-Y, Chen J.-R, Wang P.-Z, Yang M.-N, Liang D, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 738
    • 9h Jackman MM, Im S, Bohman SR, Lo CC. L, Garrity AL, Castle SL. Chem. Eur. J. 2018; 24: 594
  • 10 Yang L, Gao P, Duan X.-H, Gu Y.-R, Guo L.-N. Org. Lett. 2018; 20: 1034
  • 11 Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Eur. J. Org. Chem. 2018; 4113
  • 12 Liu S, Huang Y, Qing F.-L, Xu X.-H. Org. Lett. 2018; 20: 5497
    • 13a Lu S, Gong Y, Zhou D. J. Org. Chem. 2015; 80: 9336
    • 13b Tung TT, Christensen SB, Nielsen J. Chem. Eur. J. 2017; 23: 18125
  • 14 Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Org. Chem. Front. 2018; 5: 2820
  • 15 Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org. Chem. Front. 2018; 5: 3382
  • 16 Wei W, Wang L, Yue H.-L, Bao P, Liu W, Hu C, Yang D, Wang H. ACS Sustainable Chem. Eng. 2018; 6: 17252
  • 17 Zheng D, Studer A. Org. Lett. 2019; 21: 325
  • 18 Gu Y.-R, Duan X.-H, Chen L, Ma Z.-Y, Gao P, Guo L.-N. Org. Lett. 2019; 21: 917
  • 19 Zhang W, Pan Y.-L, Yang C, Chen L, Li X, Cheng J.-P. J. Org. Chem. 2019; 84: 7786
  • 20 Mane KD, Kamble RB, Suryavanshi G. New J. Chem. 2019; 43: 7403
  • 21 Xue W, Su Y, Wang K.-H, Zhang R, Feng Y, Cao L, Huang D, Hu Y. Org. Biomol. Chem. 2019; 17: 6654
    • 22a Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 22b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 22c Stetter H, Kuhlmann H. Org. React. 2004; 40: 407
  • 23 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
    • 24a Cavazzuti A, Paglietti G, Hunter WN, Gamarro F, Piras S, Loriga M, Alleca S, Corona P, McLuskey K, Tulloch L, Gibellini F, Ferrari S, Costi MP. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 1448
    • 24b Piras S, Loriga M, Carta A, Paglietti G, Costi MP, Ferrari S. J. Heterocycl. Chem. 2006; 43: 541
  • 25 Zeng X, Liu C, Wang X, Zhang J, Wang X, Hu Y. Org. Biomol. Chem. 2017; 15: 8929
  • 26 Yuan J.-W, Fu J.-H, Liu S.-N, Xiao Y.-M, Mao P, Qu L.-B. Org. Biomol. Chem. 2018; 16: 3203
  • 27 Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
  • 28 Bunnett JF. Acc. Chem. Res. 1978; 11: 413
    • 29a Hussain S, Pareen S, Hao X, Zhang S, Wang W, Qin X, Yang Y, Chen X, Zhu S, Zhu C, Ma B. Eur. J. Med. Chem. 2014; 80: 383
    • 29b Li D, Ma H, Yu W. Adv. Synth. Catal. 2015; 357: 3696
    • 29c Yan YM, Gao Y, Ding MW. Tetrahedron 2016; 72: 5548
    • 29d Areephong J, Huo B, Mbaezue II, Ylijoki KE. O. Tetrahedron Lett. 2016; 57: 3124
  • 30 Bowman WR, Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
  • 31 Yin K, Zhang R. Org. Lett. 2017; 19: 1530
  • 32 Paul S, Ha JH, Park GE, Lee YR. Adv. Synth. Catal. 2017; 359: 1515
  • 33 Yuan J, Liu S, Qu L. Adv. Synth. Catal. 2017; 359: 4197
  • 34 Yuan H, Li X, Qu X, Sun L, Xu W, Tang W. Med. Chem. Res. 2009; 18: 671
  • 35 Ramesh B, Reddy CR, Kumar GR, Reddy BV. S. Tetrahedron Lett. 2018; 59: 628
  • 36 Jung HI, Lee JH, Kim DY. Bull. Korean Chem. Soc. 2018; 39: 1003
    • 37a Krisch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 37b Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley-Blackwell; Chichester: 2009
    • 37c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 37d Jin Z, Hammond GB, Xu B. Aldrichimica Acta 2012; 45: 67
    • 37e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
  • 38 Wang L, Zhang Y, Li F, Hao X, Zhang H.-Y, Zhao J. Adv. Synth. Catal. 2018; 360: 3969

    • For recent reviews, see:
    • 39a Langlois BR. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux FR, Tressaud A. Elsevier; Oxford: 2017: 125
    • 39b Song H.-X, Han Q.-Y, Zhao C.-L, Zhang C.-P. Green Chem. 2018; 20: 1662
  • 40 Hong G, Yuan J, Pan G, Wang Z, Yang L, Xiao Y, Mao P, Zhang X. Org. Chem. Front. 2019; 6: 1173
  • 41 Wang L, Liu H, Li F, Zhao J, Zhang H.-Y, Zhang Y. Adv. Synth. Catal. 2019; 361: 2354
  • 42 Xue W, Su Y, Wang K.-H, Cao L, Feng Y, Zhang W, Huang D, Hu Y. Asian J. Org. Chem. 2019; 8: 887
  • 43 Dou G.-Y, Jiang YY, Xu K, Zeng C.-C. Org. Chem. Front. 2019; 6: 2392
  • 44 Jin C, Zhaung X, Sun B, Li D, Zhu R. Asian J. Org. Chem. 2019; 8: 1490
  • 45 For recent review, see: Brennfüher A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114

    • For selected examples, see:
    • 46a Bachi MD, Bosch E. Tetrahedron Lett. 1986; 27: 641
    • 46b Singh AK, Bakshi PK, Corey EJ. J. Am. Chem. Soc. 1987; 109: 6187
    • 46c Coppa F, Fontana F, Lazzarini E, Minisci F, Pianese G, Zhao L. Tetrahedron Lett. 1992; 33: 3057
    • 46d Dilabio GA, Scanlan EM, Walton JC. Org. Lett. 2005; 7: 155
    • 46e Herzon SB, Meyer AG. J. Am. Chem. Soc. 2005; 127: 5342
    • 46f Cannella R, Clerici A, Panzeri W, Pastori N, Punta C, Porta O. J. Am. Chem. Soc. 2006; 128: 5358
    • 46g Trost BM, Waser J, Meyer A. J. Am. Chem. Soc. 2008; 130: 16424
    • 46h Yu W.-Y, Sit WN, Lai K.-M, Zhou ZY, Chan AS. C. J. Am. Chem. Soc. 2008; 130: 3304
    • 47a Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi H. Angew. Chem. Int. Ed. 2010; 49: 10154
    • 47b Li X, Fang M, Hu P, Hong G, Tang Y, Xu X. Adv. Synth. Catal. 2014; 356: 2103
    • 47c Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 47d Pan C, Han J, Zhang H, Zhu C. J. Org. Chem. 2014; 79: 5374
    • 47e Gao Y, Lu W, Liu P, Sun P. J. Org. Chem. 2016; 81: 2482
    • 47f Li X, Fang X, Zhuang S, Liu P, Sun P. Org. Lett. 2017; 19: 3580
  • 48 Xie L.-Y, Peng S, Fan T.-G, Liu Y.-F, Sun M, Jiang L.-L, Wang X.-X, Cao Z, He W.-M. Sci. China Chem. 2019; 62: 460

    • For selected examples, see:
    • 49a Gulevskaya AV, Burov ON, Pozharskii AF, Kletskii ME, Korbukova IN. Tetrahedron 2008; 64: 696
    • 49b Gupta A, Deshmukh MS, Jain N. J. Org. Chem. 2017; 82: 4784
  • 50 Sumunnee L, Pimpasri C, Noikham M, Yotphan S. Org. Biomol. Chem. 2018; 16: 2697
  • 51 Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org. Lett. 2018; 20: 7125
  • 52 Li K.-J, Xu K, Liu Y.-G, Zeng C.-C, Sun B.-G. Adv. Synth. Catal. 2019; 361: 1033
  • 53 Yang Q, Yang Z, Tan Y, Zhao J, Sun Q, Zhang H.-Y, Zhang Y. Adv. Synth. Catal. 2019; 361: 1662
  • 54 Yuan J, Zhu J, Fu J, Yang L, Xiao Y, Mao P, Du X, Qu L. Org. Chem. Front. 2019; 6: 925
    • 55a Rangarajan TM, Singh R, Brahma R, Devi K, Singh RP, Singh RP, Prasad AK. Chem. Eur. J. 2014; 20: 14218
    • 55b Huang R, Huang Y, Lin X, Rong M, Weng Z. Angew. Chem. Int. Ed. 2015; 54: 5736
    • 55c Zhang K, Xu X.-H, Qing F.-L. J. Fluorine Chem. 2017; 196: 24
  • 56 Yang L, Li S, Cai L, Ding Y, Fu L, Cai Z, Ji H, Li G. Org. Lett. 2017; 19: 2746
    • 57a Nakai T, Tanaka K, Ishikawa N. J. Fluorine Chem. 1977; 9: 89
    • 57b Camps F, Coll J, Messeguer A, Pericas MA. Synthesis 1980; 727
    • 57c Kamal A, Pratap TB, Ramana KV, Ramana AV, Babu AH. Tetrahedron Lett. 2002; 43: 7353
    • 57d Shen X, Neumann CN, Kleinlein C, Goldberg NW, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 5662
    • 57e Idoux JP, Gupton JT, McCurry CK, Crews AD, Jurss CD, Colon C, Rampi RC. J. Org. Chem. 1983; 48: 3771
  • 58 Xu J, Yang H, Cai H, Bao H, Li W, Zhang P. Org. Lett. 2019; 21: 4698
  • 59 Zhang B, Daniliuc CG, Studer A. Org. Lett. 2014; 16: 250

    • For selected examples, see:
    • 60a Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
    • 60b Allen DV, Venkataraman D. J. Org. Chem. 2003; 68: 4590
    • 60c Han L, Zhang C, Yazawa H, Shimada S. J. Am. Chem. Soc. 2004; 126: 5080
    • 60d Kalek M, Ziadi A, Stawinski J. Org. Lett. 2008; 10: 4637
    • 60e Demmer CS, Niels K.-L, Bunch L. Chem. Rev. 2011; 111: 7981
    • 60f Zhao Y, Wu G, Li Y, Gao L, Han F.-S. Chem. Eur. J. 2012; 18: 9622

      For selected examples, see:
    • 61a Tayama O, Nakano A, Iwahama T, Sakaguchi S, Ishii Y. J. Org. Chem. 2004; 69: 5494
    • 61b Kagayama T, Nakano A, Sakaguchi S, Ishii Y. Org. Lett. 2006; 8: 407
    • 61c Pan X.-Q, Zou J.-P, Zhang G.-L, Zhang W. Chem. Commun. 2011; 47: 7875
    • 61d Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
    • 61e Mi X, Wang C, Huang M, Zhang J, Wu Y, Wu Y. Org. Lett. 2014; 16: 3356
  • 62 Gao M, Xie Y, Chauvin R, Cui X. Chem. Commun. 2016; 52: 2846
  • 63 Kim Y, Kim DY. Tetrahedron Lett. 2018; 59: 2443