Synlett 2019; 30(13): 1525-1535
DOI: 10.1055/s-0037-1611861
account
© Georg Thieme Verlag Stuttgart · New York

Electrophilic Amination: An Update

,
Department of Chemistry, Rice University, BioScience Research Collaborative, 6500 Main Street, Houston, TX 77030, USA   eMail: kurti.laszlo@rice.edu
› Institutsangaben
We thank the National Institute of General Medical Sciences (R01 GM-114609-04), the National Science Foundation (CAREER:SusChEM CHE-1546097) and the Robert A. Welch Foundation (Grant C-1764) for financial support. L.K. gratefully acknowledges the generous financial support of Rice University.
Weitere Informationen

Publikationsverlauf

Received: 23. April 2019

Accepted after revision: 20. Mai 2019

Publikationsdatum:
08. Juli 2019 (online)


Abstract

In this account, we provide an overview of some recent advances in electrophilic amination methodologies that have been developed in the Kürti group over the last seven years. Our group’s focus has been to develop novel amination methodologies that directly yield N-unprotected amine products.

1 Introduction

2 Amination of Boronic Acids

3 Aziridination of Unactivated Olefins

4 Rhodium-Catalyzed C–H Amination of Arenes

5 Synthesis of Carbazoles

6 Amination of Aryl- and Alkylmetals

7 Doubly Electrophilic N-Linchpin Reagents

8 Aza-Rubottom Oxidation of Silyl Enol Ethers

9 Summary

 
  • References

  • 1 Lawrence SA. Amines: Synthesis, Properties and Applications, 1st ed. Cambridge University Press; Cambridge: 2004

    • For recent reviews on reductive amination, see:
    • 3a Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 3b Ouellet SG, Walji AM, Macmillan DW. C. Acc. Chem. Res. 2007; 40: 1327
  • 4 Ciganek E. Org. React. 2008; 72: 1
  • 6 Zhu C, Wang R, Falck JR. Org. Lett. 2012; 14: 3494
  • 7 Zhu C, Li G, Ess DH, Falck JR, Kürti L. J. Am. Chem. Soc. 2012; 134: 18253
    • 8a Voth S, Hollett JW, McCubbin JA. J. Org. Chem. 2015; 80: 2545
    • 8b Sun H.-B, Gong L, Tian Y.-B, Wu J.-G, Zhang X, Liu J, Fu Z, Niu D. Angew. Chem. Int. Ed. 2018; 57: 9456

      For recent reviews on aziridine chemistry, see:
    • 9a Degennaro L, Trinchera P, Luisi R. Chem. Rev. 2014; 114: 7881
    • 9b Pellissier H. Tetrahedron 2010; 66: 1509
    • 9c Yudin AK. Aziridines and Epoxides in Organic Synthesis, 1st ed. Wiley VCH; Weinheim: 2007: 399
    • 9d Watson ID. G, Yu L, Yudin AK. Acc. Chem. Res. 2006; 39: 194
    • 9e Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 10a Dauban P, Sanière L, Tarrade A, Dodd RH. J. Am. Chem. Soc. 2001; 123: 7707
    • 10b Evans DA, Faul MM, Bilodeau MT, Anderson BA, Barnes DM. J. Am. Chem. Soc. 1993; 115: 5328
    • 10c Li Z, Conser KR, Jacobsen EN. J. Am. Chem. Soc. 1993; 115: 5326
  • 11 Jat JL, Paudyal MP, Gao H, Xu QL, Yousufuddin M, Devarajan D, Ess DH, Kürti L, Falck JR. Science 2014; 343: 61
  • 12 Ma Z, Zhou Z, Kürti L. Angew. Chem. Int. Ed. 2017; 56: 9886
  • 13 Nicolaou KC, Rhoades D, Wang Y, Bai R, Hamel E, Aujay M, Sandoval J, Gavrilyuk J. J. Am. Chem. Soc. 2017; 139: 7318
  • 14 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
  • 15 Paudyal MP, Adebesin AM, Burt SR, Ess DH, Ma Z, Kürti L, Falck JR. Science 2016; 353: 1144
    • 16a D’Amato EM, Börgel J, Ritter T. Chem. Sci. 2019; 10: 2424
    • 16b Liu J, Wu K, Shen T, Liang Y, Zou M, Zhu Y, Li X, Li X, Jiao N. Chem. Eur. J. 2017; 23: 563
    • 16c Legnani L, Prina Cerai G, Morandi B. ACS Catal. 2016; 6: 8162
    • 16d Munnuri S, Anugu RR, Falck JR. Org. Lett. 2019; 21: 1926
  • 17 Farndon JJ, Ma X, Bower JF. J. Am. Chem. Soc. 2017; 139: 14005
  • 18 Gao H, Xu QL, Yousufuddin M, Ess DH, Kürti L. Angew. Chem. Int. Ed. 2014; 53: 2701
  • 19 Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103
  • 20 Corey EJ, Gross AW. J. Org. Chem. 1985; 50: 5391
  • 21 Page PC. B, Murrell VL, Limousin C, Laffan DD. P, Bethell D, Slawin AM. Z, Smith TA. D. J. Org. Chem. 2000; 65: 4204
  • 22 Gao H, Zhou Z, Kwon DH, Coombs J, Jones S, Behnke NE, Ess DH, Kürti L. Nat. Chem. 2017; 9: 681

    • For examples of Cu-catalyzed electrophilic amination of arylmetals, see:
    • 23a Berman AM, Johnson JS. J. Org. Chem. 2005; 70: 364
    • 23b Berman AM, Johnson JS. J. Am. Chem. Soc. 2004; 126: 5680

    • For examples of Co-catalyzed electrophilic amination of arylmetals, see:
    • 23c Graßl S, Chen Y.-H, Hamze C, Tüllmann CP, Knochel P. Org. Lett. 2019; 21: 494
    • 23d Li J, Tan E, Keller N, Chen Y.-H, Zehetmaier PM, Jakowetz AC, Bein T, Knochel P. J. Am. Chem. Soc. 2019; 141: 98
  • 24 Zhou Z, Ma Z, Behnke NE, Gao H, Kürti L. J. Am. Chem. Soc. 2017; 139: 115
  • 25 Choong IC, Ellman JA. J. Org. Chem. 1999; 64: 6528
  • 26 Behnke NE, Kielawa R, Kwon DH, Ess DH, Kürti L. Org. Lett. 2018; 20: 8064
  • 27 For an early example of the unique reactivity of iminomalonates, see: Niwa Y, Takayama K, Shimizu M. Tetrahedron Lett. 2001; 42: 5473
  • 28 Kattamuri PV, Yin J, Siriwongsup S, Kwon DH, Ess DH, Li Q, Li G, Yousufuddin M, Richardson PF, Sutton SC, Kürti L. J. Am. Chem. Soc. 2017; 139: 11184

    • For selected reviews on α-amination of carbonyl compounds, see:
    • 29a Erdik E. Tetrahedron 2004; 60: 8747
    • 29b Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
    • 29c Ramirez TA, Zhao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931

    • For representative methods, see:
    • 29d Smulik JA, Vedejs E. Org. Lett. 2003; 5: 4187
    • 29e Sandoval D, Frazier CP, Bugarin A, Read de Alaniz J. J. Am. Chem. Soc. 2012; 134: 18948
    • 29f Mizar P, Wirth T. Angew. Chem. Int. Ed. 2014; 53: 5993
    • 29g Yang X, Toste FD. J. Am. Chem. Soc. 2015; 137: 3205
    • 29h de la Torre A, Tona V, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 12416
    • 29i Han Y, Corey EJ. Org. Lett. 2019; 21: 283
  • 30 Zhou Z, Cheng QQ, Kürti L. J. Am. Chem. Soc. 2019; 141: 2242
  • 31 Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
  • 32 Berkessel A, Adrio JA. J. Am. Chem. Soc. 2006; 128: 13412