Synlett 2020; 31(03): 248-254
DOI: 10.1055/s-0037-1611818
synpacts
© Georg Thieme Verlag Stuttgart · New York

Radical Biocatalysis: Using Non-Natural Single Electron Transfer Mechanisms to Access New Enzymatic Functions

Todd K. Hyster*
We thank Princeton University, the Searle Scholar Award, and the NIH (R01-GM127703) for support.
Weitere Informationen

Publikationsverlauf

Received: 13. März 2019

Accepted after revision: 14. April 2019

Publikationsdatum:
07. Mai 2019 (online)


Abstract

Exploiting non-natural reaction mechanisms within native enzymes is an emerging strategy for expanding the synthetic capabilities of biocatalysts. When coupled with modern protein engineering techniques, this approach holds great promise for biocatalysis to address long-standing selectivity and reactivity challenges in chemical synthesis. Controlling the stereochemical outcome of reactions involving radical intermediates, for instance, could benefit from biocatalytic solutions because these reactions are often difficult to control by using existing small molecule catalysts. General strategies for catalyzing non-natural radical reactions within enzyme active sites are, however, undeveloped. In this account, we highlight three distinct strategies developed in our group that exploit non-natural single electron transfer mechanisms to unveil previously unknown radical biocatalytic functions. These strategies allow common oxidoreductases to be used to address the enduring synthetic challenge of asymmetric hydrogen atom transfer.

1 Introduction

2 Photoinduced Electron Transfer from NADPH

3 Ground State Electron Transfer from Flavin Hydroquinone

4 Enzymatic Redox Activation in NADPH-Dependent Oxidoreductases

5 Conclusion

 
  • References

    • 1a Patel RN. Bioorg. Med. Chem. 2018; 26: 1252
    • 1b Martinez CA, Hu S, Dumond S, Tao J, Kelleher P, Tully L. Org. Process Res. Dev. 2008; 12: 392
    • 1c Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ. Science 2010; 329: 305
    • 1d Greenberg WA, Varvak A, Hanson SR, Wong K, Huang H, Chen P, Burk MP. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5788
    • 1e Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, Kochrekar DA, Cherat RN, Pai GG. Org. Process Res. Dev. 2010; 14: 193
    • 2a Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Nat. Rev. Chem. 2018; 2: 409
    • 2b Guazzaroni M.-E, Beloqui A, Golyshin PN, Ferrer M. World J. Microbiol. Biotechnol. 2009; 25: 945
    • 3a Hammer SC, Knight AM, Arnold FH. Curr. Opin. Green Sustain. Chem. 2017; 7: 23
    • 3b Renata H, Wang ZJ, Arnold FH. Angew. Chem. Int. Ed. 2015; 54: 3351
    • 3c Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Chem. Rev. 2018; 118: 142
    • 3d von Heijne G. Annu. Rev. Biochem. 2018; 87: 101
    • 4a Bornscheuer UT, Kazlauskas RJ. Angew. Chem. Int. Ed. 2004; 43: 6032
    • 4b Miao Y, Rahimi M, Geertsema EM, Poelarends GJ. Curr. Opin. Chem. Biol. 2015; 25: 115
    • 4c Bornscheuer UT. Philos. Trans. A Math. Phys. Eng. Sci. 2018; 376: 20170063
    • 5a Hyster TK, Ward TR. Angew. Chem. Int. Ed. 2016; 55: 7344
    • 5b Jeschek M, Panke S, Ward TR. Trends Biotechnol. 2018; 35: 60
  • 6 Busto E, Gotor-Fernández V, Gotor V. Chem. Soc. Rev. 2010; 39: 4504
    • 7a Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3262
    • 7b Garrido-Castro AF, Maestro MC, Alemán J. Tetrahedron Lett. 2018; 59: 1286
    • 7c Meggers E. Chem. Commun. 2015; 51: 3290
  • 8 Auclair K, Hu Z, Little DM, Ortiz de Montellano PR, Groves JT. J. Am. Chem. Soc. 2002; 124: 6020
  • 9 Broderick JB, Duffus BR, Duschene KS, Shepard EM. Chem. Rev. 2014; 114: 4229
  • 10 Pollak N, Dölle C, Ziegler M. Biochem. J. 2007; 402: 205
  • 11 Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
    • 12a Fukuzumi S, Hironaka K, Tanaka T. J. Am. Chem. Soc. 1983; 105: 4722
    • 12b Fukuzumi S, Inada S, Suenobu T. J. Am. Chem. Soc. 2003; 125: 4808
    • 13a Sibi MP, Patil K. Org. Lett. 2005; 7: 1453
    • 13b Nanni D, Curran DP. Tetrahedron: Asymmetry 1996; 7: 2417
    • 13c Murakata M, Tsutsui H, Hoshino O. J. Chem. Soc., Chem. Commun. 1995; 481
    • 13d Tanner DD, Kharrat A. J. Am. Chem. Soc. 1988; 110: 2968
    • 13e Hague MB, Roberts BP, Tocher DA. J. Chem. Soc., Perkin Trans. 1 1998; 2881
    • 13f Nakano Y, Biegasiewicz KF, Hyster TK. Curr. Opin. Chem. Biol. 2019; 49: 16
  • 14 Emmanuel MA, Greenberg NR, Oblinsky DG, Hyster TK. Nature 2016; 540: 414
  • 15 Noey EL, Tibrewal N, Jiménez-Osés G, Osuna S, Park J, Bond CM, Cascio D, Liang J, Zhang X, Huisman GW, Tang Y, Houk KN. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: E7065
  • 16 Man H, Kędziora K, Kulig J, Frank A, Lavandera I, Gotor-Fernández V, Rother D, Hart S, Turkenburg JP, Grogan G. Top. Catal. 2014; 57: 356
  • 17 Lima CG. S, Lima T. dM, Duarte M, Jurberg ID, Paixão MW. ACS Catal. 2016; 6: 1389
  • 18 Åhman J, Wolfe JP, Troutman MV, Palucki M, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 1918
  • 19 Toogood HS, Scrutton NS. ACS Catal. 2018; 8: 3532
  • 20 Mansoorabadi SO, Thibodeaux CJ, Liu H.-W. J. Org. Chem. 2007; 72: 6329
  • 21 Sandoval BA, Meichan AJ, Hyster TK. J. Am. Chem. Soc. 2017; 139: 11313
    • 22a Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
    • 22b Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
    • 23a Banerjee A, Falvey DE. J. Am. Chem. Soc. 1998; 120: 2965
    • 23b Banerjee A, Falvey DE. J. Am. Chem. Soc. 1997; 62: 6245
  • 24 Biegasiewicz KF, Cooper SJ, Emmanuel MA, Miller DC, Hyster TK. Nat. Chem. 2018; 10: 770