Synthesis 2019; 51(17): 3313-3319
DOI: 10.1055/s-0037-1611787
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Deoxygenative C2-Sulfonylation of Quinoline N-Oxides with DABSO and Phenyldiazonium Tetrafluoroborates for the Synthesis of 2-Sulfonylquinolines via a Radical Reaction

Guang-Hui Li
a   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China   eMail: wangzulichem@163.com   eMail: wangzuli09@tsinghua.org.cn
,
Dao-Qing Dong
a   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China   eMail: wangzulichem@163.com   eMail: wangzuli09@tsinghua.org.cn
,
Qi Deng
b   School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. of China
,
Shi-Qiang Yan
c   Shandong Dyne Marine Biopharmaceutical Co., Ltd., Weihai, Shandong 264300, P. R. of China
,
a   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. of China   eMail: wangzulichem@163.com   eMail: wangzuli09@tsinghua.org.cn
› Institutsangaben
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21402103, 21772107), the China Postdoctoral Science Foundation (150030), and the Research Fund of Qingdao Agricultural University’s Highlevel Person (631303).
Weitere Informationen

Publikationsverlauf

Received: 14. Februar 2019

Accepted after revision: 14. März 2019

Publikationsdatum:
15. Mai 2019 (online)


These authors contributed equally to this article.

Abstract

An efficient and practical method for the synthesis of 2-sulfonylquinolines through copper-catalyzed deoxygenative C2-sulfonylation of quinoline N-oxides with 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) and phenyldiazonium tetrafluoroborates is demonstrated. Products with various substituents were obtained in moderate to high yields.

Supporting Information

 
  • References

    • 1a Lee H.-Y, Chang J.-Y, Nien C.-Y, Kuo C.-C, Shih K.-H, Wu C.-H, Chang C.-Y, Lai W.-Y, Liou J.-P. J. Med. Chem. 2011; 54: 8517
    • 1b Hussain I, Yawer MA, Lalk M, Lindequist U, Villinger A, Fischer C, Langer P. Bioorg. Med. Chem. 2008; 16: 9898
    • 1c Grassberger MA, Turnowsky F, Hildebrandt J. J. Med. Chem. 1984; 27: 947
    • 1d Liang Q, Zhang Y, Zeng M, Guan L, Xiao Y, Xiao F. Toxicol. Res. 2018; 7: 521
    • 1e Stevens M, Pannecouque C, De Clercq E, Balzarini J. Antimicrob. Agents Chemother. 2003; 47: 2951
    • 1f Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Green Chem. 2017; 19: 4785
    • 1g Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
    • 1h Wei W, Bao P, Yue H, Liu S, Wang L, Li Y, Yang D. Org. Lett. 2018; 20: 5291
    • 1i Yu Q, Yang Y, Wan J, Liu Y. J. Org. Chem. 2018; 83: 11385
    • 1j Hu F, Gao W, Chang H, Li X, Wei W. Chin. J. Org. Chem. 2015; 35: 1848
    • 2a Xue F, Wang D, Li X, Wan B. J. Org. Chem. 2012; 77: 3071
    • 2b Furukawa N, Ogawa S, Matsumur K, Fujihara H. J. Org. Chem. 1991; 56: 6341
    • 3a Cacchi S, Fabrizi G, Goggiamani A, Parisi LM, Bernini R. J. Org. Chem. 2004; 69: 5608
    • 3b Kar A, Sayyed IA, Lo WF, Kaiser HM, Beller M, Tse MK. Org. Lett. 2007; 9: 3405
    • 3c Maloney KM, Kuethe JT, Linn K. Org. Lett. 2011; 13: 102
    • 3d Xie L.-Y, Duan Y, Lu L.-H, Li Y.-J, Peng S, Wu C, Liu K.-J, Wang Z, He W.-M. ACS Sustainable Chem. Eng. 2017; 5: 10407
    • 3e Lu L.-H, Zhou S.-J, He W.-B, Xia W, Chen P, Yu X, Xu X, He W.-M. Org. Biomol. Chem. 2018; 16: 9064
    • 3f Li G.-H, Dong D.-Q, Yang Y, Yu X.-Y, Wang Z.-L. Adv. Synth. Catal. 2019; 361: 832
    • 3g Li G.-H, Dong D.-Q, Yu X.-Y, Wang Z.-L. New J. Chem. 2019; 43: 1667
    • 3h Xie L.-Y., Peng S., Liu F., Liu Y.-F., Sun M., Tang Z.-L., Jiang S., Cao Z., He W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193
  • 4 Sun K, Chen X.-L, Li X, Qu L.-B, Bi W.-Z, Chen X, Ma H.-L, Zhang S.-T, Han B.-W, Zhao Y.-F, Li C.-J. Chem. Commun. 2015; 51: 12111
    • 5a Xie L.-Y, Li Y.-J, Qu J, Duan Y, Hu J, Liu K.-J, Cao Z, He W.-M. Green Chem. 2017; 19: 5642
    • 5b Xie L.-Y, Peng S, Liu F, Yi J.-Y, Wang M, Tang Z, Xu X, He W.-M. Adv. Synth. Catal. 2018; 360: 4259
    • 5c Xie L.-Y, Peng S, Lu L.-H, Hu J, Bao W.-H, Zeng F, Tang Z, Xu X, He W.-M. ACS Sustainable Chem. Eng. 2018; 6: 7989
  • 6 Su Y, Zhou X.-J, He C.-L, Zhang W, Ling X, Xiao X. J. Org. Chem. 2016; 81: 4981
  • 7 Wang R.-J, Zeng Z.-B, Chen C, Yi N.-N, Jiang J, Cao Z, Deng W, Xiang J.-N. Org. Biomol. Chem. 2016; 14: 5317
  • 8 Fu W.-K, Sun K, Qu C, Chen X.-L, Qu L.-B, Bi W.-Z, Zhao Y.-F. Asian J. Org. Chem. 2017; 6: 492
  • 9 Sumunnee L, Buathongjan C, Pimpasri C, Yotphan S. Eur. J. Org. Chem. 2017; 1025
  • 10 Du B, Qian P, Wang Y, Mei H, Han J, Pan Y. Org. Lett. 2016; 18: 4144
    • 11a Xie L.-Y, Peng S, Liu F, Chen G.-R, Xia W, Yu X.-Y, Li W.-F, Cao Z, He W.-M. Org. Chem. Front. 2018; 5: 2604
    • 11b Xie L.-Y, Peng S, Jiang L.-L, Peng X, Xia W, Yu X, Wang X.-X, Cao Z, He W.-M. Org. Chem. Front. 2019; 6: 167
  • 12 Nguyen B, Emmet EJ, Willis MC. J. Am. Chem. Soc. 2010; 132: 16372

    • For selected examples, see:
    • 13a Qiu G.-Y.-S, Lai L.-F, Cheng J, Wu J. Chem. Commun. 2018; 54: 10405
    • 13b Mao R.-Y, Zheng D.-Q, Xia H.-G, Wu J. Org. Chem. Front. 2016; 3: 693
    • 13c Wang H.-P, Sun S, Cheng J. Org. Lett. 2017; 19: 5844
    • 13d Vedovato V, Talbot EP. A, Willis MC. Org. Lett. 2018; 20: 5493
    • 13e Bao W.-H, Wu C, Wang J.-T, Xia W, Chen P, Tang Z, Xu X, He W.-M. Org. Biomol. Chem. 2018; 16: 8403
    • 13f Wang Y, Deng L.-L, Deng Y, Han J.-L. J. Org. Chem. 2018; 83: 4674
    • 13g Zhu T.-H, Zhang X.-C, Zhao K, Loh TP. Org. Chem. Front. 2019; 6: 94
    • 13h Tribby AL, Rodríguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2294
    • 13i Du B, Wang Y, Sha W, Qian P, Mei H, Han J, Pan Y. Asian J. Org. Chem. 2017; 6: 153
    • 13j Sheng J, Li Y, Qi G. Org. Chem. Front. 2017; 4: 95
    • 13k Xie L.-Y., Peng S., Fan T.-G., Liu Y.-F., Sun M., Jiang L.-L., Wang X.-X., Cao Z., He W.-M. Sci. China Chem. 2019, 62, 460.
    • 13l Wang X, Xue L, Wang Z. Org. Lett. 2014; 16: 4056
    • 13m Li G., Gan Z., Kong K., Dou X., Yang D.; Adv. Synth. Catal.; 2019, in press; DOI: 10.1002/adsc.201900157
    • 14a Sun K, Shi Z.-D, Liu Z.-H, Luan B.-X, Zhu J.-L, Xue Y.-R. Org. Lett. 2018; 20: 6687
    • 14b Xiang Y.-C, Kuang Y.-Y, Wu J. Chem. Eur. J. 2017; 23: 6996
  • 15 Zhou K.-D, Zhang J, Lai L.-F, Cheng J, Sun J.-T, Wu J. Chem. Commun. 2018; 54: 7459
  • 16 Yang D.-S, Sun P.-F, Wei W, Liu F.-J, Zhang H, Wang H. Chem. Eur. J. 2018; 24: 4423
  • 17 Liu N.-W, Chen Z.-K, Herbert A, Ren H.-J, Manolikakes G. Eur. J. Org. Chem. 2018; 5725
    • 18a Zheng D.-Q, Yu J.-Y, Wu J. Angew. Chem. Int. Ed. 2016; 55: 11925
    • 18b Gong X.-X, Ding Y.-C, Fan X.-N, Wu J. Adv. Synth. Catal. 2017; 359: 2999
    • 18c Sheng J, Li Y.-W, Qiu G.-Y.-S. Org. Chem. Front. 2017; 4: 95
    • 18d Tsai AS, Curto JM, Rocke BN, Schmitt AM. R. D, Ingle GK, Mascitti V. Org. Lett. 2016; 18: 508
    • 19a Dong D.-Q, Chen W.-J, Yang Y, Gao X, Wang Z.-L. ChemistrySelect 2019; 4: 2480
    • 19b Hao S.-H, Li L.-X, Dong D.-Q, Wang Z.-L, Yu X. Tetrahedron Lett. 2018; 59: 4073
    • 19c Dong D.-Q, Gao X, Li L.-X, Hao S.-H, Wang Z.-L. Res. Chem. Intermed. 2018; 44: 7557
    • 19d Li L.-X, Dong D.-Q, Hao S.-H, Wang Z.-L. Tetrahedron Lett. 2018; 59: 1517
  • 20 Chen X, Zhu C.-W, Cui C.-L, Wu Y.-J. Chem. Commun. 2013; 49: 6900
  • 21 Biswas A, Karmakar U, Pal A, Samanta R. Chem. Eur. J. 2016; 22: 13826
  • 22 Li P, Jiang Y.-J, Li H, Dong W.-R, Peng Z.-H, An D.-L. Synth. Commun. 2018; 48: 1909