Synlett 2019; 30(11): 1253-1268
DOI: 10.1055/s-0037-1611770
synpacts
© Georg Thieme Verlag Stuttgart · New York

2-Azadienes as Enamine Umpolung Synthons for the Preparation of Chiral Amines

Steven J. Malcolmson*
Department of Chemistry, Duke University, NC 27708, USA
,
Kangnan Li
,
Xinxin Shao
› Institutsangaben
Our research was generously supported by the National Institutes of Health (GM124286), the American Chemical Society PRF (57565-DNI1), and Duke University.
Weitere Informationen

Publikationsverlauf

Received: 02. Februar 2019

Accepted after revision: 05. März 2019

Publikationsdatum:
26. März 2019 (online)


Abstract

The development of new strategies for the preparation of chiral amines is an important objective in organic synthesis. In this Synpacts, we summarize our approach for catalytically accessing nucleophilic aminoalkyl metal species from 2-azadienes, and its application in generating a number of important but elusive chiral amine scaffolds. Reductive couplings with ketones and imines afford 1,2-amino tertiary alcohols and 1,2-diamines, respectively, whereas fluoroarylations of gem-difluoro-2-azadienes deliver α-trifluoromethylated benzylic amines.

1 Introduction

2 Background: Umpolung Strategies for Preparing Chiral Amines

3 Background: 2-Azadienes

4 Reductive Couplings of 2-Azadienes

5 Fluoroarylations of gem-Difluoro-2-azadienes

6 Summary and Outlook

 
  • References

  • 1 Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 2a Vesely J, Rios R. Chem. Soc. Rev. 2014; 43: 611
    • 2b Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 2c Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
    • 2d Ellman JA, Owens TD, Tang TP. Acc. Chem. Res. 2002; 35: 984
    • 3a Mahatthananchai J, Bode JW. Acc. Chem. Res. 2013; 47: 696
    • 3b Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 3c Boyce GR, Greszler SN, Johnson JS, Linghu X, Malinowski JT, Nicewicz DA, Satterfield AD, Schmitt DC, Steward KM. J. Org. Chem. 2012; 77: 4503
    • 3d Smith AB. III, Wuest WM. Chem. Commun. 2008; 5883
    • 3e Seebach D. Angew. Chem. Int. Ed. Engl. 1979; 18: 239
    • 4a Wang R, Ma M, Gong X, Panetti GB, Fan X, Walsh PJ. Org. Lett. 2018; 20: 2433
    • 4b Patel NR, Kelly CB, Siegenfeld AP, Molander GA. ACS Catal. 2017; 7: 1766
    • 4c Fava E, Millet A, Nakajima M, Loescher S, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 6776
    • 4d Jeffrey JL, Petronijević FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 8404
    • 4e Hager D, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 16986
    • 5a Okamoto S, Ariki R, Tsujioka H, Sudo A. J. Org. Chem. 2017; 82: 9731
    • 5b Okamoto S, Kojiyama K, Tsujioka H, Sudo A. Chem. Commun. 2016; 52: 11339
    • 5c Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. chem. Int. Ed. 2015; 54: 8828
    • 6a Kizu T, Uraguchi D, Ooi T. J. Org. Chem. 2016; 81: 6953
    • 6b Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
  • 7 Ye C.-X, Melcamu YY, Li H.-H, Cheng J.-T, Zhang T.-T, Ruan Y.-P, Zheng X, Lu X, Huang P.-Q. Nat. Commun. 2018; 9: 410
  • 8 Murphy JA. J. Org. Chem. 2014; 79: 3731
    • 9a Lei Y, Yang J, Qi R, Wang S, Wang R, Xu Z. Chem. Commun. 2018; 54: 11881
    • 9b Li M, Berritt S, Matuszewski L, Deng G, Pascual-Escudero A, Panetti GB, Poznik M, Yang X, Chruma JJ, Walsh PJ. J. Am. Chem. Soc. 2017; 139: 16327
    • 9c Li M, Gutierrez O, Berritt S, Pascual-Escudero A, Yeşilçimen A, Yang X, Adrio J, Huang G, Nakamaru-Ogiso E, Kozlowski MC. Nat. Chem. 2017; 9: 997
    • 10a Sukhorukov AY, Sukhanova AA, Zlotin SG. Tetrahedron 2016; 72: 6191
    • 10b Ballini R, Gabrielli S, Palmieri A, Petrini M. Curr. Org. Chem. 2011; 15: 1482
    • 11a Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 11b Burns NZ, Baran PS, Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
    • 13a López R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
    • 13b Kondo M, Nishi T, Hatanaka T, Funahashi Y, Nakamura S. Angew. Chem. Int. Ed. 2015; 54: 8198
    • 13c Lin S, Kawato Y, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 5183
    • 14a Hayashi M, Iwanaga M, Shiomi N, Nakane D, Masuda H, Nakamura S. Angew. Chem. Int. Ed. 2014; 53: 8411
    • 14b Ortín I, Dixon DJ. Angew. Chem. Int. Ed. 2014; 53: 3462
  • 15 Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 16a Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 16b Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
    • 16c Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
    • 16d Tsubogo T, Saito S, Seki K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 13321
    • 16e Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 17a Tang S, Zhang X, Sun J, Niu D, Chruma JJ. Chem. Rev. 2018; 118: 10393
    • 17b Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
    • 17c Katritzky AR, Piffl M, Lang H, Anders E. Chem. Rev. 1999; 99: 665
    • 18a Li Z, Hu B, Wu Y, Fei C, Deng L. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 1730
    • 18b Hu B, Deng L. Angew. Chem. Int. Ed. 2018; 57: 2233
    • 18c Chen P, Zhang J. Org. Lett. 2017; 19: 6550
    • 18d Hu L, Wu Y, Li Z, Deng L. J. Am. Chem. Soc. 2016; 138: 15817
    • 18e Chen P, Yue Z, Zhang J, Lv X, Wang L, Zhang J. Angew. Chem. Int. Ed. 2016; 55: 13316
    • 18f Wu Y, Hu L, Li Z, Deng L. Nature 2015; 523: 445
    • 19a O’Brien P. Chem. Commun. 2008; 655
    • 19b Beak P, Basu A, Gallagher DJ, Park YS, Thayumanavan S. Acc. Chem. Res. 1996; 29: 552
    • 20a DiPucchio RC, Roşca S.-C, Schafer LL. Angew. Chem. Int. Ed. 2018; 57: 3469
    • 20b Cordier CJ, Lundgren RJ, Fu GC. J. Am. Chem. Soc. 2013; 135: 10946
    • 20c McGrew GI, Stanciu C, Zhang J, Carroll PJ, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2012; 51: 11510
    • 20d Murai T, Aso H, Kato S. Org. Lett. 2002; 4: 1407
    • 21a Zhu Y, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 4500
    • 21b Li M, Yücel B, Adrio J, Bellomo A, Walsh PJ. Chem. Sci. 2014; 5: 2383
    • 22a Liu J, Cao C.-G, Sun H.-B, Zhang X, Niu D. J. Am. Chem. Soc. 2016; 138: 13103
    • 22b Qian X, Ji P, He C, Zirimwabagabo J.-O, Archibald MM, Yeagley AA, Chruma JJ. Org. Lett. 2014; 16: 5228
    • 23a McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DW. C. Angew. Chem. Int. Ed. 2017; 56: 728
    • 23b Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355 ; DOI: 10.1126/science.aam7355
    • 23c Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJ. E, Zhong JZ, Mills RB, Yan M, Yuan C, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 260
    • 23d Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 23e Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 23f Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
    • 23g Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 23h Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 23i Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
    • 23j Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
    • 23k El Khatib M, Serafim RA. M, Molander GA. Angew. Chem. Int. Ed. 2016; 55: 254
    • 23l Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 24a Li M, González-Esguevillas M, Berritt S, Yang X, Bellomo A, Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2825
    • 24b Spangler JE, Kobayashi Y, Verma P, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
    • 24c Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
    • 25a Trost BM, Li X. Chem. Sci. 2017; 8: 6815
    • 25b Trost BM, Mahapatra S, Hansen M. Angew. Chem. Int. Ed. 2015; 54: 6032
    • 26a Reznichenko AL, Hultzsch KC. J. Am. Chem. Soc. 2012; 134: 3300
    • 26b Eisenberger P, Ayinla RO, Lauzon JM. P, Schafer LL. Angew. Chem. Int. Ed. 2009; 48: 8361
    • 26c Herzon SB, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 14940
  • 27 Barluenga J, Joglar J, González FJ, Fustero S. Synlett 1990; 129
    • 28a Alves MJ, Durães MM, Fortes AG. Tetrahedron Lett. 2003; 44: 5079
    • 28b Ntirampebura D, Ghosez L. Synthesis 2002; 2043
    • 28c Echavarren AM, Stille JK. J. Am. Chem. Soc. 1988; 110: 4051
    • 28d Bayard P, Sainte F, Beaudegnies R, Ghosez L. Tetrahedron Lett. 1988; 29: 3799
    • 28e Demoulin A, Gorissen H, Hesbain-Frisque A.-M, Ghosez L. J. Am. Chem. Soc. 1975; 97: 4409
    • 29a Palacios F, Perez de Heredia I, Rubiales G. J. Org. Chem. 1995; 60: 2384
    • 29b Barluenga J, Tomás M, Ballesteros A, Gotor V. J. Chem. Soc., Chem. Commun. 1987; 1195
    • 30a Palacios F, Alonso C, Tobillas C, Rubiales G. Heterocycles 2004; 64: 229
    • 30b Palacios F, Alonso C, Rubiales G, Tobillas C, Ezpeleta JM. Heterocycles 2003; 61: 493
    • 30c Palacios F, Alonso C, Amezua P, Rubiales G. J. Org. Chem. 2002; 67: 1941
    • 30d Cheng YS, Ho E, Mariano PS, Ammon HL. J. Org. Chem. 1985; 50: 5678
    • 31a Barluenga J, Joglar J, González FJ, Gotor V, Fustero S. J. Org. Chem. 1988; 53: 5960
    • 31b Govindan CK, Taylor G. J. Org. Chem. 1983; 48: 5348
    • 32a Barluenga J, Palacios F, González FJ, Fustero S. J. Chem. Soc., Chem. Commun. 1988; 1596
    • 32b Barluenga J, Joglar J, Fustero S, Gotor V. J. Chem. Soc., Chem. Commun. 1986; 361
  • 33 Li K, Shao X, Tseng L, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 598
  • 34 Shao X, Li K, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 7083
  • 35 Jnoff E, Ghosez L. J. Am. Chem. Soc. 1999; 121: 2617
  • 36 Trost BM, Zhang L, Lam TM. Org. Lett. 2018; 20: 3938
  • 37 Monbaliu J.-CM, Masschelein KG. R, Stevens CV. Chem. Soc. Rev. 2011; 40: 4708
  • 38 Wulff G, Böhnke H, Klinken HT. Liebigs Ann. Chem. 1988; 1988: 501
  • 39 Tarzia G, Balsamini C, Spadoni G, Duranti E. Synthesis 1988; 514
  • 40 Barluenga J, Joglar J, Fustero S, Gotor V, Krüger C, Romão MJ. Chem. Ber. 1985; 118: 3652
  • 41 Barluenga J, González FJ, Fustero S, Gotor V. J. Chem. Soc., Chem. Commun. 1986; 1179
  • 42 Paparin J.-L, Crévisy C, Grée R, Toupet L. J. Heterocycl. Chem. 2000; 37: 411
  • 43 Bujak P, Krompiec S, Malarz J, Krompiec M, Filapek M, Danikiewicz W, Kania M, Gębarowska K, Grudzka I. Tetrahedron 2010; 66: 5972
  • 44 Henry KM, Townsend CA. J. Am. Chem. Soc. 2005; 127: 3300
  • 45 Movassaghi M, Hill MD. J. Am. Chem. Soc. 2006; 128: 4592
  • 46 For cyclization of a Z-type 2-azadiene, see: Leijendekker LH, Weweler J, Leuther TM, Streuff J. Angew. Chem. Int. Ed. 2017; 56: 6103
  • 47 Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599
  • 48 Barrett AG. M, Seefeld MA, Williams DJ. J. Chem. Soc., Chem. Commun. 1994; 1053
  • 50 Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos JM. Tetrahedron 2007; 63: 523
  • 51 Georg GI, He P, Kant J, Mudd J. Tetrahedron Lett. 1990; 31: 451
  • 52 Balsamini C, Duranti E, Mariani L, Salvatori A, Spadoni G. Synthesis 1990; 779
  • 53 Kauffmann T, Berg H, Kiippelmann E, Kuhlmann D. Chem. Ber. 1977; 110: 2659
  • 54 Capra J, Le Gall T. Synlett 2010; 441
  • 55 Panunzio M, Zarantonello P. Org. Process Res. Dev. 1998; 2: 49
  • 56 Barroso MT, Kascheres A. J. Org. Chem. 1999; 64: 49
  • 57 Böhme H, Ingendoh A. Chem. Ber. 1979; 112: 1297
  • 58 Liu S, Yu Y, Liebeskind LS. Org. Lett. 2007; 9: 1947
    • 59a Davidsen SK, Philips GW, Martin SF. Org. Synth. Coll. Vol. VIII 1993; 451
    • 59b Kauffmann T, Koch U, Steinseifer F, Vahrenhorst A. Tetrahedron Lett. 1977; 18: 3341
    • 60a Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 60b Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: aah5133 ; DOI: 10.1126/science.aah5133
    • 61a Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
    • 61b Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 61c Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
    • 61d Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
    • 63a Gui Y.-Y, Hu N, Chen X.-W, Liao L.-L, Ju T, Ye J.-H, Zhang Z, Li J, Yu D.-G. J. Am. Chem. Soc. 2017; 139: 17011
    • 63b Zhou Y, Bandar JS, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 8126
    • 63c Lee J, Torker S, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 821
    • 63d Han JT, Jang WJ, Yun J. J. Am. Chem. Soc. 2016; 138: 15146
    • 63e Yang Y, Perry IB, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 9787
    • 63f Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
    • 63g Bandar JS, Ascic E, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5821
    • 63h Wang Y.-M, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5024
    • 64a Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251
    • 64b Tsai EY, Liu RY, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 2007
    • 65a Burchak ON, Py S. Tetrahedron 2009; 36: 7333
    • 65b Reetz MT. Chem. Rev. 1999; 99: 1121
  • 66 Christensen C, Juhl K, Hazell RG, Jørgensen KA. J. Org. Chem. 2002; 67: 4875
  • 67 Tosaki S.-y, Hara K, Gnanadesikan V, Morimoto H, Harada S, Sugita M, Yamagiwa N, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 11776
  • 68 Silverio DL, Fu P, Carswell EL, Snapper ML, Hoveyda AH. Tetrahedron Lett. 2015; 56: 3489
    • 69a Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 685
    • 69b Ma J, Harms K, Meggers E. Chem. Commun. 2016; 52: 10183
  • 70 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
  • 71 Ooi T, Takeuchi M, Kato D, Uematsu Y, Tayama E, Sakai D, Maruoka K. J. Am. Chem. Soc. 2005; 127: 5073
  • 72 Lipshutz BH, Noson K, Chrisman W, Lower A. J. Am. Chem. Soc. 2003; 125: 8779
    • 73a Lee J, Radomkit S, Torker S, Del Pozo J, Hoveyda AH. Nat. Chem. 2018; 10: 99
    • 73b Xi Y, Hartwig JF. J. Am. Chem. Soc. 2017; 139: 12758
    • 74a Kizirian J.-C. Chem. Rev. 2008; 108: 140
    • 74b Saibabu Kotti SR. S, Timmons C, Li G. Chem. Biol. Drug Des. 2006; 67: 101
    • 74c Viso A, Fernandez de la Pradilla R, García A, Flores A. Chem. Rev. 2005; 105: 3167
    • 74d Lucet D, Le Gall T, Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2580
    • 74e Bennani YL, Hanessian S. Chem. Rev. 1997; 97: 3161
    • 75a Corey EJ, Lee D.-H, Sarshar S. Tetrahedron: Asymmetry 1995; 6: 3
    • 75b Pikul S, Corey EJ. Org. Synth. Coll. Vol. IX . Wiley; London: 1998: 387
  • 79 Wang F.-L, Dong X.-Y, Lin J.-S, Zeng Y, Jiao G.-Y, Gu Q.-S, Guo X.-Q, Ma C.-L, Liu X.-Y. Chem 2017; 3: 979
  • 80 Ascic E, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 4666
  • 81 Lipshutz BH, Shimizu H. Angew. Chem. Int. Ed. 2004; 43: 2228
  • 82 Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 83a Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 83b Fioravanti S. Tetrahedron 2016; 72: 4449
    • 84a Kawai H, Kusuda A, Nakamura S, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2009; 48: 6324
    • 84b Therkelsen M, Rasmussen MT, Lindhardt AT. Chem. Commun. 2015; 51: 9651
  • 85 For an additional transformation, see: Yang L, Fan W.-X, Lin E, Tan D.-H, Li Q, Wang H. Chem. Commun. 2018; 54: 5907
  • 86 Tang H.-J, Lin L.-Z, Feng C, Loh T.-P. Angew. Chem. Int. Ed. 2017; 56: 9872
    • 87a Tian P, Wang C.-Q, Cai S.-H, Song S, Ye L, Feng C, Loh T.-P. J. Am. Chem. Soc. 2016; 138: 15869
    • 87b Gao B, Zhao Y, Hu J. Angew. Chem. Int. Ed. 2015; 54: 638
    • 87c Gao B, Zhao Y, Ni C, Hu J. Org. Lett. 2014; 16: 102
  • 88 Daniel PE, Onyeagusi CI, Ribeiro AA, Li K, Malcolmson SJ. ACS Catal. 2019; 9: 205