CC BY-ND-NC 4.0 · SynOpen 2019; 03(01): 1-3
DOI: 10.1055/s-0037-1611697
letter
Copyright with the author

One-Pot Reductive Acetylation of Aldehydes using 1-Hydrosilatrane in Acetic Acid

Reuben R. James
a   Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL, 60115, USA
,
Sharon Herlugson
a   Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL, 60115, USA
,
Sami E. Varjosaari
a   Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL, 60115, USA
,
Vladislav Skrypai
a   Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL, 60115, USA
,
Zainab Shakeel
b   Department of Chemistry & Biology, Ryerson University, 350 Victoria St., Toronto, Ontario, M5B 2K3, Canada   Email: marcjadler@ryerson.ca
,
Thomas M. Gilbert
a   Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL, 60115, USA
,
Marc J. Adler*
a   Department of Chemistry & Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy., DeKalb, IL, 60115, USA
b   Department of Chemistry & Biology, Ryerson University, 350 Victoria St., Toronto, Ontario, M5B 2K3, Canada   Email: marcjadler@ryerson.ca
› Author Affiliations
Further Information

Publication History

Received: 13 November 2018

Accepted after revision: 05 December 2018

Publication Date:
03 January 2019 (online)


Abstract

A one-pot, direct reductive acetylation of aldehydes was achieved under mild conditions using 1-hydrosilatrane as a safe and easily accessible catalyst. Described herein is a facile synthesis that produces acylated primary alcohols that can serve as valuable building blocks for organic synthesis. The method has good functional group tolerance and works for a range of aryl aldehydes, with the notable exception of electron-rich arenes. A library of esters was isolated by flash chromatography in yields as high as 92%.

Supporting Information

 
  • References

  • 1 Fischer E, Speier A. Ber. Dtsch. Chem. Ges. 1895; 28: 3252
  • 2 Zeynizadeh B, Setamdideh D, Faraji F. Bull. Korean Chem. Soc. 2008; 29: 76
  • 3 Kaplan L. J. Am. Chem. Soc. 1966; 88: 4970
  • 4 Otera J, Nishikido J. Esterification: Methods, Reactions, and Applications . Weinheim; Wiley-VCH: 2010
  • 5 Sartori G, Ballini R, Bigi F, Bosica G, Maggi R, Righi P. Chem. Rev. 2004; 104: 199
  • 6 Rao YV. S, Vijayanand P, Kulkarni SJ, Subrahmanyam M, Rama Rao AV. Synth. Commun. 1995; 25: 849
  • 7 Pathak VP. Synth. Commun. 1993; 23: 83
  • 8 Gaertner R. J. Org. Chem. 1959; 24: 61
  • 9 Cavill GW. K, Clezy PS, Whitfield FB. Tetrahedron 1961; 12: 139
  • 10 Aft H, Grant RR, Molyneux RJ. Tetrahedron 1967; 23: 1963
  • 11 Kato T, Sato M, Katagiri N, Awaji T, Nakano J. Chem. Pharm. Bull. 1978; 2: 209
  • 12 Rao BR, Nambudiry ME. N. Synth. Commun. 1991; 21: 1721
  • 13 Nakano Y, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2000; 41: 1565
  • 14 Li JJ, Corey EJ. Name Reactions for Functional Group Transformations . John Wiley & Sons; Weinheim: 2010
  • 15 Gaus PL, Kao SC, Youngdahl K, Dorensbourg MY. J. Am. Chem. Soc. 1985; 107: 2428
  • 16 Nystrom RF. Brown W. G. J. Am. Chem. Soc. 1947; 69: 1197
  • 17 Larson GL, Fry JL. Org. React. . vol. 71. Hoboken; NJ, USA: 2008: 1-737
  • 18 Takeda T, Tsuchida T, Fujiwara T. Chem. Lett. 1984; 7: 1219
  • 19 Doyle MP, DeBruyn DJ, Donnelly SJ, Kooistra DA, Odubela AA, West CT, Zonnebelt SM. J. Org. Chem. 1974; 39: 2740
  • 20 Skrypai V, Hurley JJ. M, Adler MJ. Eur. J. Org. Chem. 2016; 2207
  • 21 Varjosaari SE, Skrypai V, Suating P, Hurley JJ. M, Gilbert TM, Adler MJ. Eur. J. Org. Chem. 2017; 229
  • 22 Varjosaari SE, Skrypai V, Suating P, Hurley JJ. M, De Lio AM, Gilbert TM, Adler MJ. Adv. Synth. Catal. 2017; 359: 1872
  • 23 Charoenpinijkarn W, Suwankruhasn M, Kesapabutr B, Wongkasemjit S, Jamieson AM. Eur. Polym. J. 2001; 37: 1441
  • 24 General Experimental Procedure: A 25-mL round-bottom flask was charged with a magnetic stirrer bar, 1-hydrosilatrane (10 mmol), and the aldehyde starting reagent (5 mmol) dissolved in acetic acid (5 mL). The flask was capped with a water-cooled reflux condenser and heated to reflux in a silicon oil bath for 24 hours at 120 °C. Following cooling of the mixture to room temperature, the resulting gel/solid was then crushed and suspended or dissolved in 1 M aqueous HCl (ca. 20 mL) before being transferred to a 125 mL separatory funnel. The aqueous mixture was extracted three times with dichloromethane (30–50 mL) and the combined organic extracts were dried over anhydrous sodium sulfate. The solution was then filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using various hexane/ethyl acetate mixtures to afford the purified product
  • 25 Characterization data for benzyl acetate (3a): Yield: 64% (3.2 mmol). 1H NMR (300 MHz, CDCl3): δ = 7.42–7.29 (m, 5 H), 5.14 (s, 2 H), 2.13 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 170.9, 136.0, 128.6, 128.2, 66.3, 21.0. IR (ATR): 1738, 1223, 1026, 737, 696 cm–1
  • 26 Characterization data for naphthalen-1-ylmethyl acetate (3o): Yield: 71% (3.55 mmol). 1H NMR (300 MHz, CDCl3): δ = 8.039 (d, J = 8.1 Hz, 1 H), 7.93–7.87 (m, 2 H), 7.62–7.45 (m, 4 H), 5.60 (s, 1 H), 2.14 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 171.0, 133.7, 131.6, 131.5, 129.3, 128.7, 127.5, 126.6, 126.0, 125.3, 123.5, 64.6, 21.0. IR (ATR): 1736, 1221, 1022, 793, 773 cm–1