CC BY 4.0 · SynOpen 2019; 03(01): 16-20
DOI: 10.1055/s-0037-1611676
letter
Copyright with the author

Iron-Catalysed Aerobic Oxidative C–C Bond Cleavage of Ketones for the Synthesis of Primary Amides

Haosheng Zhan
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
Zhiwei Hu
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
Weihua Tao
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
Min Ling
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
Wei Cao
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
Jing Lin
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
Zhenhua Liu
b  College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. of China
,
Yu Wang*
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
,
a  School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, P. R. of China   Email: fangzhongxue120@163.com
› Author Affiliations
The authors wish to thank the National Natural Science Foundation of China (21506017), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB610021) and the Flagship Major Development of Jiangsu Higher Education Institutions (PPZY2015B113).
Further Information

Publication History

Received: 01 January 2019

Accepted after revision: 28 January 2019

Publication Date:
18 February 2019 (online)


Abstract

An iron-catalysed aerobic oxidative C–C bond cleavage of ketones for the synthesis of primary amides has been developed using TEMPO and oxygen as an oxidant. This reaction tolerates a wide range of substrates, and primary amides are obtained in good to excellent yields. Substrates with long-chain alkyl substituents could also be selectively cleaved and converted into the corresponding amides.

Supporting Information

 
  • References and Notes

  • 2 The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Material Science. Wiley; New York: 2000
    • 3a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
    • 3b Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 3c Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew. Chem. Int. Ed. 2014; 126: 502
  • 4 Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2007; 46: 5202
  • 5 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 9750
  • 6 Kim JW, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2008; 47: 9249
  • 7 Yamaguchi K, Kobayashi H, Oishi T, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 544
    • 8a Goto A, Endo K, Saito S. Angew. Chem. Int. Ed. 2008; 47: 3607
    • 8b Ramón RS, Marion N, Nolan SP. Chem. Eur. J. 2009; 15: 8695
    • 8c Hirano T, Uehara K, Kamata K, Mizuno N. J. Am. Chem. Soc. 2012; 134: 6425
    • 9a Cao L, Ding J, Gao M, Wang Z, Li J, Wu A. Org. Lett. 2009; 11: 3810
    • 9b Angeles NA, Villavicencio F, Guadarrama C, Corona D, Cuevas-Yañez E. J. Braz. Chem. Soc. 2010; 21: 905
    • 9c Rajendar K, Kant R, Narender T. Adv. Synth. Catal. 2013; 355: 3591
    • 9d Sathyanarayana P, Upare A, Ravi O, Muktapuram PR, Bathula SR. RSC Adv. 2016; 6: 22749
  • 10 Song Q, Feng Q, Yang K. Org. Lett. 2014; 16: 624
  • 11 Chen X, Peng Y, Li Y, Wu M, Guo H, Wang J, Sun S. RSC Adv. 2017; 7: 18588
  • 12 Fan W, Yang Y, Lei J, Jiang Q, Zhou W. J. Org. Chem. 2015; 80: 8782
    • 13a Tang C, Jiao N. Angew. Chem. Int. Ed. 2014; 126: 6646
    • 13b Zhou W, Fan W, Jiang Q, Liang Y.-F, Jiao N. Org. Lett. 2015; 17: 2542
  • 14 Ma H, Zhou X, Zhan Z, Wei D, Shi C, Liu X, Huang G. Org. Biomol. Chem. 2017; 15: 7365
    • 15a Fang Z, Feng Y, Dong H, Li D, Tang T. Chem. Commun. 2016; 11120
    • 15b Fang Z, Wei C, Lin J, Liu Z, Wang W, Xu C, Wang X, Wang Y. Org. Biomol. Chem. 2017; 15: 9974
    • 15c Wang Y, Wei C, Tang R, Zhan H, Lin J, Liu Z, Tao W, Fang Z. Org. Biomol. Chem. 2018; 16: 6191
  • 16 Zhang L, Bi X, Guan X, Li X, Liu Q, Barry B.-D, Liao P. Angew. Chem. Int. Ed. 2013; 52: 11303
    • 17a Huang L, Cheng K, Yao B, Xie Y, Zhang Y. J. Org. Chem. 2011; 76: 5732
    • 17b Zhang C, Feng P, Jiao N. J. Am. Chem. Soc. 2013; 40: 15257
    • 17c Chen X, Chen T, Ji F, Zhou Y, Yin S.-F. Catal. Sci. Technol. 2015; 5: 2197
    • 17d Bisz E, Szostak M. ChemSusChem 2017; 10: 3964
    • 18a Li H, He Z, Guo X, Li W, Zhao X, Li Z. Org. Lett. 2009; 11: 4176
    • 18b Liu J, Ma S. Org. Lett. 2013; 15: 5150
    • 18c Ratnikov MO, Xu X, Doyle MP. J. Am. Chem. Soc. 2013; 135: 9475
    • 18d Shen T, Yuan Y, Song S, Jiao N. Chem. Commun. 2014; 4115
    • 18e Chen X, Chen T, Ji F, Zhou Y, Yin S.-F. Catal. Sci. Technol. 2015; 5: 2197
    • 18f Wang L, Shang S, Li G, Ren L, Lv Y, Gao S. J. Org. Chem. 2016; 81: 2189
    • 18g Xing Q, Lv H, Xia C, Li F. Chem. Commun. 2016; 489
    • 19a Palomo C, Aizpurua JM, Cuevas C, Urchegui R, Linden A. J. Org. Chem. 1996; 61: 4400
    • 19b Fung HS, Li BZ, Chan KS. Organometallics 2012; 31: 570
  • 20 Typical synthetic procedure: To a mixture of 1a (60 mg, 0.4 mmol) and NaN3 (78 mg, 1.2 mmol) in DMF (2.0 mL) were added Fe2(SO4)3 (16.0 mg, 0.04 mmol), TEMPO (12.5 mg, 0.08 mol) and H2O (0.216 mL, 12 mmol). The reaction mixture was heated to 120 °C and stirred for 30 h under an oxygen atmosphere, until the substrate 1a was consumed as indicated by TLC. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 2:1) to afford product 2a (57.4 mg, 95% yield). 1H NMR (500 MHz, CDCl3): δ = 7.79 (d, J = 8.5 Hz, 2 H), 6.94 (d, J = 8.5 Hz, 2 H), 5.96 (s, 1 H), 5.74 (s, 1 H), 3.86 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 168.8, 162.5, 129.2, 125.5, 113.7, 55.4. HRMS (ESI): m/z [M+H]+ calcd. for C8H10NO2: 152.0712; found: 152.0714.