CC BY ND NC 4.0 · Synlett 2019; 30(04): 477-482
DOI: 10.1055/s-0037-1611641
letter
Copyright with the author

Copper(I) Iodide-Catalyzed Asymmetric Synthesis of Optically Active Tertiary α-Allenols

Qi Liu
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b  University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Tao Cao
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b  University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Yulin Han
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b  University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Xingguo Jiang
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b  University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Yang Tang
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b  University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Yizhan Zhai
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
b  University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
a  State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
c  Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. of China   Email: masm@sioc.ac.cn
› Author Affiliations
National Natural Science Foundation of China (Grant No. 21690063) is greatly appreciated.
Further Information

Publication History

Received: 29 September 2018

Accepted after revision: 22 November 2018

Publication Date:
22 January 2019 (eFirst)

 

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

A facile CuI-catalyzed asymmetric synthesis of chiral tertiary α-allenols with up to 95% ee starting from common tertiary propargylic alcohols and aldehydes has been developed. The amount of chiral ­ligand used in this transformation can be as low as 2.5 mol%.

Supporting Information

 
  • References and Notes

    • 1a Modern Allene Chemistry . Vols. 1 and 2 Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004

    • For a review on allenes in natural products and drugs, see:
    • 1b Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196

    • For a review on allenes in molecular materials, see:
    • 1c Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818

      For selected reviews on synthetic application of allenes, see:
    • 2a Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
    • 2b Hashmi AS. K. Angew. Chem. Int. Ed. 2000; 39: 3590
    • 2c Ma S. Acc. Chem. Res. 2003; 36: 701
    • 2d Brandsma L, Nedolya NA. Synthesis 2004; 735
    • 2e Ma S. Chem. Rev. 2005; 105: 2829
    • 2f Ma S. Aldrichimica Acta 2007; 40: 91
    • 2g Kim H, Williams LJ. Curr. Opin. Drug Discovery Dev. 2008; 11: 870
    • 2h Ma S. Acc. Chem. Res. 2009; 42: 1679
    • 2i Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
    • 2j Krause N, Winter C. Chem. Rev. 2011; 111: 1994
    • 2k Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074
    • 2l Alcaide B. Almendros P. Progress in Allene Chemistry, Chem. Soc. Rev. 2014; 43: 2879
    • 2m Ye J, Ma S. Acc. Chem. Res. 2014; 47: 989
    • 2n Muratore ME, Homs A, Obradors C, Echavarren AM. Chem. Asian J. 2014; 9: 3066
    • 2o Neff RK, Frantz DE. Tetrahedron 2015; 71: 7
    • 2p Alonso JM, Quirós MT, Muñoz MP. Org. Chem. Front. 2016; 3: 1186
    • 2q Santhoshkumar R, Cheng C.-H. Asian J. Org. Chem. 2018; 7: 1151

      For recent reviews on the asymmetric synthesis of allenes, see:
    • 3a Ogasawara M. Tetrahedron: Asymmetry 2009; 20: 259
    • 3b Neff RK, Frantz DE. ACS Catal. 2014; 4: 519
    • 3c Ye J, Ma S. Org. Chem. Front. 2014; 1: 1210
    • 3d Chu W, Zhang Y, Wang J. Catal. Sci. Technol. 2017; 7: 4570

      For selected recent reports on the asymmetric synthesis of allenes, see:
    • 4a Dai J, Duan X, Zhou J, Fu C, Ma S. Chin. J. Chem. 2018; 36: 387
    • 4b Trost BM, Zell D, Hohn C, Mata G, Maruniak A. Angew. Chem. Int. Ed. 2018; 57: 12916
    • 4c Poulsen PH, Li Y, Lauridsen VH, Jørgensen DK. B, Palazzo TA, Meazza M, Jørgensen KA. Angew. Chem. Int. Ed. 2018; 57: 10661
    • 4d Armstrong RJ, Nandakumar M, Dias RM. P, Noble A, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 8203
    • 4e Huang Y, Pozo J, Torker S, Hoveyda AH. J. Am. Chem. Soc. 2018; 140: 2643
    • 4f Zhang W, Ma S. Chem. Eur. J. 2017; 23: 8590
    • 4g Jiang Y, Diagne AB, Thomson RJ, Schaus SE. J. Am. Chem. Soc. 2017; 139: 1998
    • 4h Qian D, Wu L, Lin Z, Sun J. Nat. Commun. 2017; 8: 567
    • 4i Tap A, Blond A, Wakchaure VN, List B. Angew. Chem. Int. Ed. 2016; 55: 8962
    • 4j Liu Y, Liu X, Hu H, Guo J, Xia Y, Lin L, Feng X. Angew. Chem. Int. Ed. 2016; 55: 4054
    • 4k Chu W.-D, Zhang L, Zhang Z, Zhou Q, Mo F, Zhang Y, Wang J. J. Am. Chem. Soc. 2016; 138: 14558
    • 4l Tang Y, Chen Q, Liu X, Wang G, Lin L, Feng X. Angew. Chem. Int. Ed. 2015; 54: 9512
    • 4m Wang M, Liu Z.-L, Zhang X, Tian P.-P, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 14830
    • 4n Huang X, Cao T, Han Y, Jiang X, Lin W, Zhang J, Ma S. Chem. Commun. 2015; 51: 6956
    • 4o Crouch IT, Neff RK, Frantz DE. J. Am. Chem. Soc. 2013; 135: 4970
    • 4p Wang Y, Zhang W, Ma S. J. Am. Chem. Soc. 2013; 135: 11517
    • 4q Hashimoto T, Sakata K, Tamakuni F, Dutton MJ, Maruoka K. Nat. Chem. 2013; 5: 240
    • 4r Ye J, Fan W, Ma S. Chem. Eur. J. 2013; 19: 716
    • 4s Qian H, Yu X, Zhang J, Sun J. J. Am. Chem. Soc. 2013; 135: 18020
    • 4t Li H, Müller D, Guénée L, Alexakis A. Org. Lett. 2012; 14: 5880
    • 4u Deska J, del Pozo Ochoa C, Bäckvall J.-E. Chem. Eur. J. 2010; 16: 4447
    • 4v Nishimura T, Makino H, Nagaosa M, Hayashi T. J. Am. Chem. Soc. 2010; 132: 12865
    • 4w Ogasawara M, Ikeda H, Nagano T, Hayashi T. J. Am. Chem. Soc. 2001; 123: 2089
    • 5a Ye J, Li S, Chen B, Fan W, Kuang J, Liu J, Liu Y, Miao B, Wan B, Wang Y, Xie X, Yu Q, Yuan W, Ma S. Org. Lett. 2012; 14: 1346
    • 5b Zhang J, Ye J, Ma S. Org. Biomol. Chem. 2015; 13: 4080
  • 6 Knöpfel TF, Aschwanden P, Ichikawa T, Watanabe T, Carreira EM. Angew. Chem. Int. Ed. 2004; 43: 5971
  • 7 Kuang J, Luo H, Ma S. Adv. Synth. Catal. 2012; 354: 933
  • 8 Due to the difficulty of isolating (R)-4, the structures of (R)-4 were assigned by comparison with the structure of (R)-4aa. The NMR yields of (R)-4 were determined by 1H NMR analysis of the crude reaction mixture. The characteristic peak of (R)-4 appeared at about δ = 3.20–2.90 ppm.

    • For selected reports that the metal/ligand ratio affects the outcome of catalytic asymmetric reactions, see:
    • 9a Rasappan R, Hager M, Gissibl A, Reiser O. Org. Lett. 2006; 8: 6099
    • 9b Shao Z, Wang J, Ding K, Chan AS. C. Adv. Synth. Catal. 2007; 349: 2375
    • 9c Bélanger É, Houzé C, Guimond N, Cantin K, Paquin J.-F. Chem. Commun. 2008; 3251
    • 9d Schätz A, Rasappan R, Hager M, Gissibl A, Reiser O. Chem. Eur. J. 2008; 14: 7259
    • 9e Peng F, Shao Z, Chan AS. C. Tetrahedron: Asymmetry 2010; 21: 465
    • 9f Zhao C, Seidel D. J. Am. Chem. Soc. 2015; 137: 4650
    • 9g Chen Q, Tang Y, Huang T, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2016; 55: 5286
  • 10 1-[(1S)-4-Methylpenta-1,2-dien-1-yl]cyclohexanol [(S)-3ab]; Typical ProcedureA flame-dried Schlenk tube with a poly(tetrafluoroethylene) plug was charged with CuI (19.1 mg, 0.1 mmol), (R,S a)-N-PINAP (14.1 mg, 0.025 mmol), and 1,4-dioxane (5 mL) under argon, and the mixture was stirred at r.t. for 30 min. Propargylic alcohol 1a (123.7 mg, 1 mmol)/1,4-dioxane (1 mL), aldehyde 2b (115.8 mg, 1.6 mmol)/1,4-dioxane (1 mL), and azocane (161.9 mg, 1.4 mmol)/1,4-dioxane (1 mL) were then added sequentially under argon. The mixture was then stirred at r.t. until the reaction was complete (TLC, ~1 h). The Schlenk tube was then placed in a preheated oil bath at 130 °C with stirring. After 8 h, the crude mixture was diluted with Et2O (10 mL) and washed with 3 M aq HCl (10 mL). The organic layer was separated, and the aqueous layer was extracted with Et2O (2 x 10 mL). The combined organic layer was washed with brine, dried (Na2SO4), filtered, and concentrated to give a residue that was purified by chromatography [silica gel, PE–EtOAc (20:1)] to give a liquid; yield: 97.0 mg (54%, 92% ee); [α]D 28 +80.8 (c 1.005, CHCl3).HPLC [Chiralcel AD-H column, hexane–i-PrOH (95:5), 0.5 mL/min, λ = 214 nm]: t R(major) = 11.8 min; t R(minor) = 10.9 min. IR (neat): 3343, 2958, 2927, 2859, 1961, 1598, 1494, 1463, 1446, 1410, 1380, 1360, 1345, 1318, 1297, 1246, 1192, 1176, 1163, 1146, 1112, 1088, 1058, 1038 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.38-5.30 (m, 2 H, CH=C=CH), 2.41-2.27 (m, 1 H, CH), 1.79-1.41 (m, 10 H, protons from 5 × CH2 + OH), 1.40–1.25 (m, 1 H, proton from CH2), 1.030 (d, J = 6.8 Hz, 3 H, CH3), 1.026 (d, J = 6.4 Hz, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 199.6, 102.3, 101.6, 70.5, 38.4, 38.3, 27.9, 25.5, 22.51, 22.47, 22.4. MS (EI): m/z (%) = 180 (M+, 1.51), 99 (100). HRMS: m/z [M+] calcd for C12H20O: 180.1514; found: 180.1512.
    • 11a Lowe G. Chem. Commun. 1965; 411
    • 11b Brewster JH. Top. Stereochem. 1967; 2: 1