CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1273-1283
DOI: 10.1055/s-0037-1611635
paper
Copyright with the author

Synthesis and Evaluation of Cyclic Acetals of Serine Hydroxylamine for Amide-Forming KAHA Ligations

Simon Baldauf
a   Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland   Email: bode@org.chem.ethz.ch
,
a   Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland   Email: bode@org.chem.ethz.ch
b   Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
› Author Affiliations
This work was supported by the Swiss National Science Foundation (169451).
Further Information

Publication History

Received: 21 November 2018

Accepted: 27 November 2018

Publication Date:
07 January 2019 (online)


Abstract

The α-ketoacid–hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. The most widely used variant employs a 5-membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. While very effective, monomers that give canonical amino acid residues are in high demand. In order to preserve the stability and reactivity of cyclic hydroxylamines, but form a canonical amino acid residue upon ligation, we sought to prepare cyclic derivatives of serine hydroxylamine. An evaluation of several cyclization strategies led to cyclobutanone ketals as the leading structures. The preparation, stability, and amide-forming ligation of these serine-derived ketals are described.

Supporting Information

 
  • References

  • 1 Bode JW, Fox RM, Baucom KD. Angew. Chem. Int. Ed. 2006; 45: 1248
  • 2 Dawson PE, Muir TW, Clark-Lewis I, Kent SB. Science (Washington, D. C.) 1994; 266: 776

    • Other amide-forming ligations include the traceless Staudinger and the serine/threonine ligation:
    • 3a Kleineweischede R, Hackenberger CP. R. Angew. Chem. Int. Ed. 2008; 47: 5984
    • 3b Zhang Y, Xu C, Lam HY, Lee CL, Li X. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 6657
  • 4 Pattabiraman VR, Ogunkoya AO, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 5114
  • 5 Wucherpfennig TG, Rohrbacher F, Pattabiraman VR, Bode JW. Angew. Chem. Int. Ed. 2014; 53: 12244
  • 6 Pusterla I, Bode JW. Nat. Chem. 2015; 7: 668
    • 7a Tokuyama H, Kuboyama T, Amano A, Yamashita T, Fukuyama T. Synthesis 2000; 1299
    • 7b Tokuyama H, Kuboyama T, Fukuyama T. Org. Synth. 2003; 80: 207
    • 7c Medina SI, Wu J, Bode JW. Org. Biomol. Chem. 2010; 8: 3405
    • 8a Knowles DA, Mathews CJ, Tomkinson NC. O. Synlett 2008; 2769
    • 8b Knight DW, Leese MP. Tetrahedron Lett. 2001; 42: 2593
    • 8c Jones KL, Porzelle A, Hall A, Woodrow MD, Tomkinson NC. O. Org. Lett. 2008; 10: 797
    • 8d Blakemore PR. Science of Synthesis . Vol. 21. Georg Thieme Verlag; Stuttgart: 2005: 857
  • 9 Rohrbacher F, Baldauf S, Wucherpfennig TG, Bode JW. Synlett 2017; 28: 1929
    • 10a Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . John Wiley & Sons; New York: 1999. 4rd ed. 300-302
    • 10b Rich RH, Bartlett PA. J. Org. Chem. 1996; 61: 3916
  • 11 Rohrbacher F, Zwicky A, Bode JW. Chem. Sci. 2017; 8: 4051