Synlett 2018; 29(19): 2567-2571
DOI: 10.1055/s-0037-1611055
cluster
© Georg Thieme Verlag Stuttgart · New York

π-Spacer-Linked Bisthienopyrroles with Tunable Optical Properties

Chandima Bulumulla ◊
a  The Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA   Email: mihaela@utdallas.edu
,
Ruwan Gunawardhana ◊
a  The Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA   Email: mihaela@utdallas.edu
,
Prabhath L. Gamage
a  The Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA   Email: mihaela@utdallas.edu
,
Ruvanthi N. Kularatne
a  The Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA   Email: mihaela@utdallas.edu
,
Michael C. Biewer
a  The Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA   Email: mihaela@utdallas.edu
,
a  The Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA   Email: mihaela@utdallas.edu
b  The Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
› Author Affiliations
This work was supported by the NSF-DMR1505950 and Welch Foundation (AT-1740) grants.
Further Information

Publication History

Received: 14 July 2018

Accepted after revision: 04 September 2018

Publication Date:
02 October 2018 (online)


Authors have contributed equally

Published as part of the Cluster Synthesis of Materials

Abstract

Thieno[3,2-b]pyrrole is an effective nonconventional semiconducting building block that could be generated in gram quantities with relatively high overall yields. Three organic semiconductors containing thieno[3,2-b]pyrrole were synthesized in good yields without requiring time-consuming column purifications. The synthesis, optical and electrochemical properties were systematically investigated.

1 Introduction

2 Experimental

3 Synthesis and Characterization

4 Theoretical Calculations

5 Optical and Electrochemical Properties

6 Thermal Stability

7 Fluorescence Experiments

8 GIXRD Data

9 Conclusions

Supporting Information

 
  • References and Notes

  • 1 Facchetti A. Mater. Today 2013; 16: 123
  • 2 Gendron D. Leclerc M. Energy Environ. Sci. 2011; 4: 1225
  • 3 Bulumulla C. Du J. Washington KE. Kularatne RN. Nguyen HQ. Biewer MC. Stefan MC. J. Mater. Chem. A 2017; 5: 2473
  • 4 Sirringhaus H. Adv. Mater. 2014; 26: 1319
  • 5 Mei J. Diao Y. Appleton AL. Fang L. Bao Z. J. Am. Chem. Soc. 2013; 135: 6724
  • 6 Wang G.-JN. Molina-Lopez F. Zhang H. Xu J. Wu H.-C. Lopez J. Shaw L. Mun J. Zhang Q. Wang S. Ehrlich A. Bao Z. Macromolecules 2018; 51: 4976
  • 7 Kielar M. Dhez O. Pecastaings G. Curutchet A. Hirsch L. Sci. Rep. 2016; 6: 39201
  • 8 Ng TN. Wong WS. Chabinyc ML. Sambandan S. Street RA. Appl. Phys. Lett. 2008; 92: 213303
  • 9 Baeg K.-J. Binda M. Natali D. Caironi M. Noh Y.-Y. Adv. Mater. 2013; 25: 4267
  • 10 Gelinck G. Heremans P. Nomoto K. Anthopoulos DT. Adv. Mater. 2010; 22: 3778
  • 11 Angione MD. Pilolli R. Cotrone S. Magliulo M. Mallardi A. Palazzo G. Sabbatini L. Fine D. Dodabalapur A. Cioffi N. Torsi L. Mater. Today 2011; 14: 424
  • 12 Du J. Fortney A. Washington KE. Bulumulla C. Huang P. Dissanayake D. Biewer MC. Kowalewski T. Stefan MC. ACS Appl. Mater. Interfaces 2016; 8: 33025
  • 13 Kularatne RS. Taenzler FJ. Magurudeniya HD. Du J. Murphy JW. Sheina EE. Gnade BE. Biewer MC. Stefan MC. J. Mater. Chem. A 2013; 1: 15535
  • 14 Jung IH. Lo W.-Y. Jang J. Chen W. Zhao D. Landry ES. Lu L. Talapin DV. Yu L. Chem. Mater. 2014; 26: 3450
  • 15 Niimi K. Kang MJ. Miyazaki E. Osaka I. Takimiya K. Org. Lett. 2011; 13: 3430
  • 16 Huang P. Du J. Gunathilake SS. Rainbolt EA. Murphy JW. Black KT. Barrera D. Hsu JW. P. Gnade BE. Stefan MC. Biewer MC. J. Mater. Chem. A 2015; 3: 6980
  • 17 Grzybowski M. Gryko TD. Adv. Opt. Mater. 2015; 3: 280
  • 18 Stalder R. Mei J. Graham KR. Estrada LA. Reynolds JR. Chem. Mater. 2014; 26: 664
  • 19 Li Y. Gu M. Pan Z. Zhang B. Yang X. Gu J. Chen Y. J. Mater. Chem. A 2017; 5: 10798
  • 20 Bulumulla C. Gunawardhana R. Kularatne RN. Hill ME. McCandless GT. Biewer MC. Stefan MC. ACS Appl. Mater. Interfaces 2018; 10: 11818
  • 21 Bulumulla C. Kularatne RN. Gunawardhana R. Nguyen HQ. McCandless GT. Biewer MC. Stefan MC. ACS Macro Lett. 2018; 7: 629
  • 22 Du J. Bulumulla C. Mejia I. McCandless GT. Biewer MC. Stefan MC. Polym. Chem. 2017; 8: 6181
  • 23 Yu H. Park KH. Song I. Kim M.-J. Kim Y.-H. Oh JH. J. Mater. Chem. C 2015; 3: 11697
  • 24 Chen Q. Trinh MT. Paley DW. Preefer MB. Zhu H. Fowler BS. Zhu XY. Steigerwald ML. Nuckolls C. J. Am. Chem. Soc. 2015; 137: 12282
  • 25 General Procedure for the Synthesis of Small Molecules 1,2-Bis[4-trimethylstannyl)aryl]ethene (0.40 mmol), ethyl-2-bromo-4-dodecyl-4H-thieno[3,2-b]pyrrole-5-carboxylate (0.370 g, 0.84 mmol), Pd2db3 (40.4 mg, 0.04 mmol), and P(o-tolyl)3 (53.6 mg, 0.17 mmol) were added with anhydrous toluene (20 mL) to a 100 mL three-neck round-bottomed flask under nitrogen and refluxed for 24 h. Solution mixture was cooled down and added to a beaker containing methanol (150 mL). The precipitated compound was filtered using gravity filtration to afford as the pure product. TP-PVP-TP Yellow solid; yield 0.248 g, 68%. 1H NMR (500 MHz, CDCl3): δ = 0.88 (t, J = 7.0 Hz, 3 H), 1.25 (br, 18 H), 1.39 (t, J = 7.0 Hz, 3 H), 1.83 (m, 2 H), 4.33 (q, J = 7.0 Hz, 2 H), 4.49 (t, J = 7.0 Hz, 2 H), 7.14 (s, 1 H), 7.17 (s, 1 H), 7.19 (s, 1 H), 7.54 (d, J = 8.5 Hz, 2 H), 7.64 (d, J = 8.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 14.26, 14.60, 22.84, 27.06, 29.49, 29.52, 29.72, 29.75, 29.77, 29.80, 31.32, 32.07, 47.73, 60.23, 106.32, 109.60, 121.51, 126.09, 126.12, 127.20, 128.33, 134.61, 136.96, 145.61, 147.25, 161.46. MALDI-TOF MS = 902.9 g/mol TP-FVF-TP Orange solid; yield 0.286 g, 81%. 1H NMR (500 MHz, CDCl3): δ = 0.86 (t, J = 7.0 Hz, 3 H), 1.24 (br, 18 H), 1.38 (t, J = 7.0 Hz, 3 H), 1.81 (m, 2 H), 4.32 (q, J = 7.0 Hz, 2 H), 4.49 (t, J = 7.5 Hz, 2 H), 6.45 (br, 1 H), 6.60 (br, 1 H), 6.90 (br, 1 H), 7.14 (br, 1 H), 7.16 (br, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.25, 14.59, 22.83, 27.05, 29.48, 29.53, 29.72, 29.76, 29.80, 31.32, 32.05, 47.78, 60.25, 105.58, 108.62, 109.56, 111.93, 114.48, 121.26, 126.45, 136.09, 145.18, 149.69, 152.81, 161.32. MALDI-TOF MS = 882.9 g/mol TP-TVT-TP Orange solid; yield 0.265 g, 72%. 1H NMR (500 MHz, CDCl3): δ = 0.87 (t, J = 7.0 Hz, 3 H), 1.25 (br, 18 H), 1.38 (t, J = 7.5 Hz, 3 H), 1.81 (m, 2 H), 4.32 (q, J = 7.0 Hz, 2 H), 4.46 (t, J = 7.5 Hz, 2 H), 6.95 (d, J = 3.5 Hz, 1 H), 6.97 (s, 1 H), 7.01 (s, 1 H), 7.11 (d, J = 3.5 Hz, 1 H), 7.13 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.26, 14.58, 22.84, 27.03, 29.49, 29.71, 29.75, 29.78, 29.80, 31.28, 32.07, 47.76, 60.27, 106.73, 109.51, 121.28, 121.48, 124.59, 126.35, 127.54, 137.38, 140.24, 141.78, 145.07, 161.33. MALDI-TOF MS = 915.3 g/mol
  • 26 Zhao B. Li C.-Z. Liu S.-Q. Richards JJ. Chueh C.-C. Ding F. Pozzo LD. Li X. Jen AK. Y. J. Mater. Chem. A 2015; 3: 6929
  • 27 Han W. He M. Byun M. Li B. Lin Z. Angew. Chem. Int. Ed. 2013; 52: 2564