Synlett 2020; 31(01): 73-76
DOI: 10.1055/s-0037-1610737
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of [1,2,3]Triazolo[1,5-a]quinoxalin-4(5H)-ones by a Metal-Free Sequential Ugi-4CR/Alkyne–Azide Cycloaddition Reaction

Yan-Mei Yan
a  Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. of China
,
Hao-Yang Li
a  Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. of China
,
Min Zhang
a  Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. of China
,
Rong-Xin Wang
a  Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. of China
,
Chen-Guang Zhou
a  Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, P. R. of China
,
Zhen-Xing Ren
b  Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R. of China   eMail: [email protected]
,
c  Central China Normal University, Wuhan 430079, P. R. of China   eMail: [email protected]
› Institutsangaben
We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (Grant No. 21572075), the National Key Research and Development Program of China (Grant No. 2018YFD0200404-10), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0775, 2019L0810, 2019L0444), and the College Students’ Innovation Program of Taiyuan Normal University (Grant No. CXCY1934).
Weitere Informationen

Publikationsverlauf

Received: 15. Oktober 2019

Accepted after revision: 08. November 2019

Publikationsdatum:
25. November 2019 (online)


Abstract

A convenient and one-pot approach to prepare [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones by a metal-free sequential Ugi-4CR/alkyne–azide cycloaddition reaction has been developed. The reaction of 2-azidobenzenamines, aldehydes, propiolic acids, and isocyanides produced the Ugi adducts, which were transformed to the [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones in moderate to good yields via alkyne–azide cycloaddition reaction.

Supporting Information

 
  • References and Notes

    • 1a Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
    • 1b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 1c Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 2a Zhu J, Bienaymé H. Multicomponent Reactions. Wiley-VCH; Weinheim: 2005
    • 2b Dömling A. Chem. Rev. 2006; 106: 17
    • 2c Banfi L, Basso A, Riva R. Top. Heterocycl. Chem. 2010; 23: 1
    • 2d Hulme C, Dietrich J. Mol. Diversity 2009; 13: 195
    • 2e Koopmanschap G, Ruijter E, Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
  • 3 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 4 Lu K, Ma YT, Gao ML, Liu Y, Li M, Xu CM, Zhao X, Yu P. Org. Lett. 2016; 18: 5038
  • 5 Zhang Y, Ao YF, Huang ZT, Wang DX, Wang MX, Zhu JP. Angew. Chem. Int. Ed. 2016; 55: 5282
  • 6 Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8
    • 7a Janvier P, Bienaymé H, Zhu JP. Angew. Chem. Int. Ed. 2002; 41: 4291
    • 7b Ilyin A, Kysil V, Krasavin M, Kurashvili I, Ivachtchenko AV. J. Org. Chem. 2006; 71: 9544
    • 7c Cheng GS, He X, Tian L, Chen JW, Li XS, Jia XS, Li J. J. Org. Chem. 2015; 80: 11100
    • 7d Lu K, Luo TP, Xiang Z, You ZJ, Fathi R, Chen JH, Yang Z. J. Comb. Chem. 2005; 7: 958
    • 8a Salcedo A, Neuville L, Rondot C, Retailleau P, Zhu JP. Org. Lett. 2008; 10: 857
    • 8b Xiang Z, Luo TP, Lu K, Cui JY, Shi XM, Fathi R, Chen JH, Yang Z. Org. Lett. 2004; 6: 3155
  • 9 Xu Z, Moliner FD, Cappelli AP, Hulme C. Angew. Chem. Int. Ed. 2012; 51: 8037
  • 10 Zanze IA, Gracias V, Djuric SW. Tetrahedron Lett. 2004; 45: 8439
  • 11 Salvador CE. M, Pieber B, Neu PM, Torvisco A, Andrade CK. Z, Kappe CO. J. Org. Chem. 2015; 80: 4590
  • 12 Zakharova EA, Shmatova OI, Kutovaya IV, Khrustalev VN, Nenajdenko VG. Org. Biomol. Chem. 2019; 17: 3433
  • 13 Vroemans R, Bamba F, Winters J, Thomas J, Jacobs J, Meervelt LV, John J, Dehaen W. Beilstein J. Org. Chem. 2018; 14: 626
    • 14a Yan YM, Li HY, Ren J, Wang S, Ding MW. Synlett 2018; 29: 1447
    • 14b Xiong J, Wei X, Yan YM, Ding MW. Tetrahedron 2017; 73: 5720
    • 14c Yan YM, Rao Y, Ding MW. J. Org. Chem. 2017; 82: 2772
    • 14d Yan YM, Gao Y. Tetrahedron 2016; 72: 5548
    • 14e Yan YM, Rao Y, Ding MW. J. Org. Chem. 2016; 81: 1263
    • 14f Wang L, Ren ZL, Ding MW. J. Org. Chem. 2015; 80: 641
    • 15a Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 15b Franc G, Kakkar A. Chem. Commun. 2008; 5267
    • 15c Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 15d Struthers H, Mindt TL, Schibli R. Dalton Trans. 2010; 39: 675
    • 15e Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 15f Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933
    • 15g Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Chem. Rev. 2016; 116: 5689
    • 15h Lau YH, Rutledge PJ, Watkinson M, Todd MH. Chem. Soc. Rev. 2011; 40: 2848
    • 15i Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
    • 16a Alvarez R, Velázquez S, San-Félix A, Aquaro S, De Clercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ. J. Med. Chem. 1994; 37: 4185
    • 16b Sheng CQ, Zhang WN. Curr. Med. Chem. 2011; 18: 733
    • 16c Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 16d El-Sagheer AH, Brown AT. Acc. Chem. Res. 2012; 45: 1258
  • 17 Shen HC, Ding FX, Deng QL, Wilsie LC, Krsmanovic ML, Taggart AK, Carballo-Jane E, Ren N, Cai TQ, Wu TJ, Wu KK, Cheng K, Chen Q, Wolff MS, Tong XC, Holt TG, Waters MG, Hammond ML, Tata JR, Colletti SL. J. Med. Chem. 2009; 52: 2587
    • 18a Bertelli L, Biagi G, Giorgi I, Manera C, Livi O, Scartoni V, Betti L, Giannaccini G, Trincavelli L, Barili PL. Eur. J. Med. Chem. 1998; 33: 113
    • 18b Biagi G, Giorgi I, Livi O, Scartoni V, Betti L, Giannaccini G, Trincavelli ML. Eur. J. Med. Chem. 2002; 37: 565
  • 19 Biagi G, Giorgi I, Livi O, Scartoni V, Betti L, Giannaccini G, Trincavelli ML. Eur. J. Med. Chem. 2002; 37: 565
  • 20 Yan JJ, Zhou FT, Qin DG, Cai T, Ding K, Cai Q. Org. Lett. 2012; 14: 1262
  • 21 An Y, He H, Liu TT, Zhang Y, Lu XY, Cai Q. Synthesis 2017; 49: 3863
  • 22 Gaetke LM, Chow CK. Toxicology 2003; 189: 147
    • 23a Zhang XF, Zhi SJ, Wang W, Liu S, Jasinski JP, Zhang W. Green Chem. 2016; 18: 2642
    • 23b Chavan SR, Gavale KS, Kamble KM, Pingale SS, Dhavale DD. Tetrahedron 2017; 73: 365
    • 23c Vekariya RH, Liu RZ, Aubé J. Org. Lett. 2014; 16: 1844
    • 23d Nguyen HH, Palazzo TA, Kurth MJ. Org. Lett. 2013; 17: 4492
    • 23e Donald JR, Wood RR, Martin SF. ACS Comb. Sci. 2012; 14: 135
  • 24 Preparation of [1,2,3]Triazolo[1,5-a]quinoxalin-4(5H)-ones 6: General Procedure A mixture of 2-azidobenzenamines 1 (1 mmol), aldehydes 2 (1 mmol), propiolic acid 3 (1 mmol), and isocyanide 4 (1 mmol) were stirred in methanol (5 mL) at room temperature for 12–24 h, then the solvent was removed completely under reduced pressure. DMF (5 mL) was added to the reaction system, and the reaction mixture was heated to 90 °C for 1–2 h to form [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones 6. Later, poured the reaction mixture into water, extracted with ethyl acetate three times, and washed with water three times. The combined organic layer was subsequently dried over anhydrous Na2SO4 and filtered. After the solvent was evaporated under vacuum, the residue was purified by recrystallization (diethyl ether/petroleum ether = 1:10, v/v) to afford 6.
  • 25 Compound 6a: white solid (yield 412 mg, 85%); mp 236–237 °C. 1H NMR (600 MHz, CDCl3): δ = 8.54 (s, 1 H, Ar-H), 8.31 (d, J = 7.2 Hz, 2 H, Ar-H), 7.49–7.33 (m, 10 H, Ar-H), 6.69 (s, 1 H, NH), 5.86 (d, J = 10.8 Hz, 1 H, CH), 1.32 (s, 9 H, 3 CH3) ppm. 13C NMR (100 MHz, CDCl3): δ = 165.9, 155.1, 149.3, 134.5, 132.2, 129.5, 129.3, 129.2, 129.0, 128.9, 128.7, 128.3, 124.8, 122.5, 121.2, 118.1, 117.0, 52.3, 28.5, 18.4 ppm. HRMS (ESI): m/z [M + H]+ calcd for C27H25ClN5O2: 486.1691; found: 486.1694.