Synlett 2018; 29(14): 1892-1896
DOI: 10.1055/s-0037-1610502
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Indole Derivatives Containing the Tetrazole Moeity Utilizing an Ugi-Azide Post-Transformation Strategy

Ali Nikbakht
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
,
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
b   Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
,
Fatemeh Baghestani
a   Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran   eMail: balalaie@kntu.ac.ir
,
Frank Rominger
c   Organisch-Chemisches Institut der Universitaet Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
› Institutsangaben
We thank the National Institute for Medical Research Development (NIMAD, Project No. 963388) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 04. April 2018

Accepted after revision: 29. Juni 2018

Publikationsdatum:
26. Juli 2018 (online)


Dedicated to Prof. Bernhard Breit on the occasion of his birthday

Abstract

An efficient strategy has been developed for the synthesis of indole derivatives containing the tetrazole moiety using a AuCl3-catalyzed cyclization reaction. The precursors of the cycloadduct were easily prepared by an Ugi-azide 4-CR in methanol at room temperature. The merit of this protocol lies in its operational simplicity, readily available starting materials, high yields of product, and good functional group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Eicher T. Hauptmann S. Speicher A. Indoles: The Chemistry of Heterocycles. 3rd ed. Wiley-VCH; Weinheim: 2012
    • 1b Katritzky AR. Pozharskii AF. Handbook of Heterocyclic Chemistry . Chap. 4 Pergamon; Oxford: 2000
    • 1c Joule JA. In Science of Synthesis (Houben-Weyl Methods of Molecular Transformations). Thomas EJ. Thieme; Stuttgart: 2000. 10 361
    • 1d Li JJ. Gribble GW. In Palladium in Heterocyclic Chemistry . Chap. 3 Pergamon; Oxford: 2000

    • For other references, see:
    • 1e Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045
    • 1f Gribble GW. In Comprehensive Heterocyclic Chemistry II . Katritzky AR. Rees CW. Scriven EF. V. Pergamon Press; Oxford, UK: 1996. Vol. 2 207
    • 1g Sundberg RJ. Indoles 1996
    • 1h Evans BE. Rittle KE. Bock MG. Di Pardo RM. Freidinger RM. Whitter WL. Lundell GF. Veber DF. Anderson PS. Eur. J. Med. Chem. 1988; 31: 2235
    • 1i Salas JA. Méndez C. Curr. Opin. Chem. Biol. 2009; 13: 152
    • 1j Butler MS. Nat. Prod. Rep. 2005; 22: 162
    • 1k Shiri M. Chem. Rev. 2012; 112: 3508
  • 2 Janosik T. Wahlström N. Bergman J. Tetrahedron 2008; 64: 9159
  • 3 Li J. Cook JM. In Name Reactions in Heterocyclic Chemistry . Li JJ. Corey E. Wiley and Sons; Hoboken, NJ: 2005
  • 4 Gribble GW. Indole Ring Synthesis: From Natural Products to Drug Discovery . Wiley and Sons; New York: 2016
  • 5 Krüger K. Tillack A. Beller M. Adv. Synth. Catal. 2008; 350: 2153
    • 6a Bartoli G. Dalpozzo R. Chem. Soc. Rev. 2014; 43: 4728
    • 6b Taber DF. Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 7a Kondo Y. Kojima S. Sakamoto T. J. Org. Chem. 1997; 62: 6507
    • 7b Ezquerra J. Pedregal C. Lamas C. Barluenga J. Pérez M. García-Martín MA. González JM. J. Org. Chem. 1996; 61: 5804
    • 7c Kondo Y. Kojima S. Sakamoto T. Heterocycles 1996; 43: 2741
    • 7d Ilies L. Isomura M. Yamauchi S.-I. Nakamura T. Nakamura E. J. Am. Chem. Soc. 2017; 139: 23
  • 8 Ye Y. Cheung KP. S. He L. Tsui GC. Org. Lett. 2018; 20: 1676
  • 9 Song S. Huang M. Li W. Zhu X. Wan Y. Tetrahedron 2015; 71: 451
  • 10 Li J. Li C. Yang S. An Y. Wu W. Jiang H. J. Org. Chem. 2016; 81: 2875
  • 11 Sheng J. Li S. Wu J. Chem. Commun. 2014; 50: 578
    • 12a Campagne JM. Prim D. Marque S. Wehbe J. Gaucher A. Michaux J. Terrasson V. Eur. J. Org. Chem. 2007; 5332
    • 12b Cacchi S. Fabrizi G. Chem. Rev. 2011; 111: 215
    • 12c Newman SG. Lautens M. J. Am. Chem. Soc. 2010; 132: 11416
    • 12d Fang Y.-Q. Lautens M. J. Org. Chem. 2008; 73: 538
    • 13a Hao WJ. Wu YN. Gao Q. Wang SL. Tu SJ. Jiang B. Tetrahedron Lett. 2016; 57: 4767
    • 13b Yang L. Ma Y. Song F. You J. Chem. Commun. 2014; 50: 3024
    • 13c Liu J. Xie X. Liu Y. Chem. Commun. 2013; 49: 11794
    • 13d Han X. Lu X. Org. Lett. 2010; 12: 3336
    • 14a Arcadi A. Pietropaolo E. Alvino A. Michelet V. Org. Lett. 2013; 15: 2766
    • 14b La-Venia A. Testero SA. Mischne MP. Mata EG. Org. Biomol. Chem. 2012; 10: 2514
  • 15 Arcadi A. Bianchi G. Marinelli F. Synthesis 2004; 610
  • 16 Brand JP. Chevalley C. Waser J. Beilstein J. Org. Chem. 2011; 7: 565
  • 17 Sakai N. Annak K. Fujita A. Sato A. Konakahara T. J. Org. Chem. 2008; 73: 4160
  • 18 Ostrovskii VA. Trifonov RE. Popova EA. Russ. Chem. Bull. 2012; 61: 768
    • 19a Kaushik N. Attri P. Kumar N. Kim C. Verma K. Choi E. Molecules 2013; 18: 6620
    • 19b Wei C.-X. Bian M. Gong G.-H. Molecules 2015; 20: 5528
    • 19c Foley C. Shaw A. Hulme C. Org. Lett. 2016; 18: 4904
    • 20a Mahindroo N. Huang C.-F. Peng Y.-H. Wang C.-C. Liao C.-C. Lien T.-W. Chittimalla SK. Huang W.-J. Chai C.-H. Prakash E. Chen C.-P. Hsu T.-A. Peng C.-H. Lu I.-L. Lee L.-H. Chang Y.-W. Chen W.-C. Chou Y.-C. Chen C.-T. Goparaju CM. V. Chen Y.-S. Lan S.-J. Yu M.-C. Chen X. Chao Y.-S. Wu S.-Y. Hsieh H.-P. J. Med. Chem. 2005; 48: 8194
    • 20b Mahindroo N. Wang C.-C. Liao C.-C. Huang C.-F. Lu I.-L. Lien T.-W. Peng Y.-H. Huang W.-J. Lin Y.-T. Hsu M.-C. Lin C.-H. Tsai C.-H. Hsu JT.-A. Chen X. Lyu P-C. Chao Y.-S. Wu S.-Y. Hsieh H.-P. J. Med. Chem. 2006; 49: 1212
    • 21a Artamonova T. Zhivich A. Dubinsk MII. Koldobskii G. Synthesis 1996; 1428
    • 21b Duncia JV. Pierce ME. Santella III JB. J. Org. Chem. 1991; 56: 2395
    • 21c Deady LW. Devine SM. J. Heterocycl. Chem. 2004; 41: 549
    • 21d Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
    • 21e Zarganes-Tzitzikas T. Patil P. Khoury K. Herdtweck E. Dömling A. Eur. J. Org. Chem. 2015; 51
    • 21f Gunawan S. Ayaz M. De Moliner F. Frett B. Kaiser C. Patrick N. Xu Z. Hulme C. Tetrahedron 2012; 68: 5606
    • 21g Medda F. Hulme C. Tetrahedron Lett. 2012; 53: 5593
    • 21h Shmatova OI. Nenajdenko VG. J. Org. Chem. 2013; 78: 9214
    • 21i Zhao T. Boltjes A. Herdtweck E. Dömling A. Org. Lett. 2013; 15: 639
    • 21j El Kaïm L. Grimaud L. Pravin P. Eur. J. Org. Chem. 2013; 4752
    • 21k Ayaz M. Xu Z. Hulme C. Tetrahedron Lett. 2014; 55: 3406
    • 21l Yerande SG. Newase KM. Singh B. Boltjes A. Dömling A. Tetrahedron Lett. 2014; 55: 3263
    • 21m Sarvary A. Maleki A. Mol. Diversity 2014; 19: 189
    • 22a Ramezanpour S. Balalaie S. Rominger F. Alavijeh NS. Bijanzadeh HR. Tetrahedron 2013; 69: 10718
    • 22b Nikbakht A. Ramezanpour S. Balalaie S. Rominger F. Tetrahedron 2015; 71: 6790
    • 23a Zhu J. Wang Q. Wang M. Multicomponent Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2015
    • 23b Orru RV. A. Ruijter E. Synthesis of Heterocycles via Multicomponent Reactions I . Springer; Berlin: 2010
    • 23c Orru RV. A. Ruijter E. Synthesis of Heterocycles via Multicomponent Reactions II . Springer; Berlin: 2010
    • 23d Sharma UK. Sharma N. Vachhani DD. Van der Eycken EV. Chem. Soc. Rev. 2015; 44: 1836
    • 24a Balalaie S. Shamakli M. Nikbakht A. Alavijeh NS. Rominger F. Rostamizadeh S. Bijanzadeh HR. Org. Biomol. Chem. 2017; 15: 5737
    • 24b Ghabraie E. Balalaie S. Mehrparvar S. Rominger F. J. Org. Chem. 2014; 79: 7926
    • 24c Maghari S. Ramezanpour S. Balalaie S. Darvish F. Rominger F. Bijanzadeh HR. J. Org. Chem. 2013; 78: 6450
    • 24d Balalaie S. Vaezghaemi A. Zarezadeh N. Rominger F. Bijanzadeh HR. Synlett 2018; 29: 1095
  • 25 Reactions and Syntheses: In the Organic Chemistry Laboratory . 2nd ed. Tietze LF. Eicher T. Diederichsen U. Speicher A. Schützenmeister N. Wiley-VCH; Weinheim: 2015
  • 26 HRMS data were collected using an Apex-QC-FT- ICR instrument with ESI. General Procedure for the Synthesis of Compounds 5a–i 2-(Phenylethynyl)aniline in MeOH (5 ml) and cyclohexanone (1 mmol) were stirred at room temperature for 2 h, then the requisite isocyanide (1 mmol) and trimethylsilyl azide were added. The mixture was stirred for 24 h until the reaction was completed. Then, the desired product was either filtered off as a white solid filtered for 5ae (ketone derivatives) or purified using column chromatography on silica gel (n-hexane/EtOAc, 9:1) for 5fi (aldehyde derivatives). The yields were in the range of 75–92%. General Procedure for the Synthesis of Compounds 6a–i The products 5ai (1mmol) and AuCl3 (5 mol%, 15 mg) were added to a reaction flask containing toluene (10 mL). After 12 h the toluene was evaporated under reduced pressure. The crude products were purified by silica gel chromatography (n-hexane/EtOAc, 7:1) to obtain the indole derivatives. N-[4-(tert-Butyl)-1-(1-cyclohexyl-1H-tetrazol-5-yl) cyclohexyl]-2-(phenylethynyl) aniline (5d) Colorless solid; yield 440 mg, (80%); Rf = 0.45 (PE/EtOAc 3:1); mp 142–146 °C. IR (KBr): ν = 1586, 2197, 3377 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.84 (s, 9 H, t-Bu), 1.16–1.34 (m, 4 H, HCyclohexyl), 1.42–1.68 (m, 5 H, HCyclohexyl), 1.73–1.93 (m, 8 H, HCyclohexyl), 2.87–2.91 (m, 2 H, HCyclohexyl), 4.72 (m, 1 H, CHN), 5.07 (s, 1 H, NH), 6.08 (d, 1 H, J = 8.1 Hz, H-Ar), 6.63 (t, 1 H, J = 7.5 Hz, H-Ar), 6.86–6.92 (dt, 1 H, J = 7.2, 1.5 Hz, H-Ar), 7.3(dd, 1 H, J = 8.1, 1.2 Hz, H-Ar), 7.34–7.43(m, 3 H, H-Ar), 7.53–7.56 (m, 2 H, H-Ar) ppm. 13C NMR (75 MHz, CDCl3): δ = 23.7, 24.8, 25.6, 27.5, 32.4, 33.5, 39.0, 47.6, 54.4, 59.2, 85.6, 95.7, 108.8, 111.8, 118.0, 123.0, 128.6, 128.7, 129.9, 131.3, 132.1, 145.4, 153.3 ppm. 1-[4-(tert-Butyl)-1-(1-cyclohexyl-1H-tetrazol-5-yl) cyclohexyl]-2-phenyl-1H-indole (6d) Colorless solid; yield 417.6 mg (87%); Rf = 0.38 (PE/EtOAc, 3:1); mp 178–181 °C. IR (KBr): ν = 1453, 1611, 2940 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.78 (s, 9 H, t-Bu), 0.88–1.56 (m, 17 H, HCyclohexyl), 2.10–2.30 (m, 2 H, HCyclohexyl), 3.10–3.15 (m, 1 H, HCyclohexyl), 6.47 (s, 1 H, H-3 indole), 6.82 (t, 1 H, J = 8.4 Hz, H-Ar), 6.89(dt, 1 H, J = 7.2, 1.2 Hz, H-Ar), 7.01 (t, 1 H, J = 7.2, H-Ar), 7.46–7.59(m, 6 H, H-Ar) ppm. 13C NMR (75 MHz, CDCl3): δ = 14.1, 23.9, 24.7, 25.3, 25.4, 26.9, 27.4, 31.2, 32.3, 32.8, 38.1, 38.6, 46.9, 47.0, 58.1, 62.5, 108.1, 112.4, 120.5, 121.3, 122.6, 124.0, 126.0, 128.3, 128.4, 137.1, 137.5, 140.9, 156.4 ppm. HRMS (ESI): m/z calcd for C31H40N5 [M + H]+: 482.3272; found: 482.3288; C31H39N5Na [M + Na]+: 504.3097; found: 504.3106. Colorless crystal (polyhedron), dimensions 0.130 × 0.120 × 0.050 mm3, crystal system triclinic, space group P, Z = 2, a = 10.4530(5) Å, b = 12.9781(6) Å, c = 13.3411(6) Å, α = 108.2879(14)°, β = 112.3234(14)°, γ = 100.5989(14)°, V = 1491.99(12) Å3, ρ = 1.189 g cm–3, T = 200(2) K, θ max= 22.980°, raduiation Mo Kα, λ = 0.71073 Å, 0.5° ω scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 3.1 and a completeness of 98.3% to a resoltion of 0.91 Å, 12857 reflections measured, 4082 unique (R (int) = 0.0380), 2672 observed (I > 2σ(I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS based on the Laue symmetry of the reciprocal space, μ = 0.09 mm–1, T min = 0.93, T max = 0.96, structure refined against F 2 with a full-matrix least-squares algorithm using the SHELXL-2014/7 (Sheldrick, 2014) software, 393 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.05 for observed reflections, final residual values R1(F) = 0.052, wR(F2) = 0.125 for observed reflections, residual electron density –0.21 to 0.14 eÅ–3. 27CCDC 1551544 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 27 Sheldrick GM. Acta Crystallogr., Sect. C: Struct. Chem. 2015; 71: 3