CC BY ND NC 4.0 · Synlett 2019; 30(04): 515-518
DOI: 10.1055/s-0037-1610402
letter
Copyright with the author

A [3+2] Cyclization of Siloxyalkynes and Isocyanides for the Synthesis of Oxazoles

An Wu
,
Financial support was provided by the National Science Foundation of China (21572192, 21490570) and the Hong Kong RGC (GRF16304714).
Further Information

Publication History

Received: 29 September 2018

Accepted after revision: 31 October 2018

Publication Date:
27 November 2018 (eFirst)

 

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

A mild and efficient [3+2] cyclization of siloxyalkynes for the synthesis of aromatic heterocycles is developed. It is a new addition to the cyclization reactions of these versatile species. In the presence of TBAF as promoter, siloxyalkynes react with electron-withdrawing isocyanides to form a range of oxazole products. In this reaction, siloxyalkynes contribute the C–O unit for the cyclization, which is different from previous typical examples where it is a two-carbon contributor. Mechanistic studies provided insights into the mechanism, which involves a ketene intermediate. Based on the mechanistic insight, an alternative catalytic system was also demonstrated to be effective for the same transformation.

Supporting Information

 
  • References and Notes


    • For reviews on siloxyalkynes, see:
    • 1a Qian H, Zhao W, Sun J. Chem. Rec. 2014; 14: 1070
    • 1b Shindo M. Synthesis 2003; 2275
    • 1c Shindo M. Tetrahedron 2007; 63: 10

      For selected examples of cyclization reactions of siloxyalkynes, see:
    • 2a Sweis RF, Schramm MP, Kozmin SA. J. Am. Chem. Soc. 2004; 126: 7442
    • 2b Danheiser RL, Gee SK. J. Org. Chem. 1984; 49: 1672
    • 2c Danheiser RL, Gee SK, Perez JJ. J. Am. Chem. Soc. 1986; 108: 806
    • 2d Movassaghi M, Hill MD, Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
    • 2e Türkmen YE, Montavon TJ, Kozmin SA, Rawal VH. J. Am. Chem. Soc. 2012; 134: 9062
    • 2f Montavon TJ, Türkmen YE, Shamsi NA, Miller C, Sumaria CS, Rawal VH, Kozmin SA. Angew. Chem. Int. Ed. 2013; 52: 13576
    • 2g Cabrera-Pardo JR, Chai DI, Liu S, Mrksich M, Kozmin SA. Nat. Chem. 2013; 5: 423
    • 2h Zhao W, Wang Z, Sun J. Angew. Chem. Int. Ed. 2012; 51: 6209
    • 2i Zhao W, Li Z, Sun J. J. Am. Chem. Soc. 2013; 135: 4680
    • 2j Zhao W, Sun J. Synlett 2014; 25: 303
    • 2k Zhao W, Qian H, Li Z, Sun J. Angew. Chem. Int. Ed. 2015; 54: 10005

      We are aware of only two examples, see:
    • 3a Qi X, Ready JM. Angew. Chem. 2008; 120: 7176
    • 3b Buchner KM, Woerpel KA. Organometallics 2010; 29: 1661
  • 4 Yeh VS. C. Tetrahedron 2004; 60: 11995
    • 5a Adamczeski M, Quiñoá E, Crews P. J. Am. Chem. Soc. 1989; 111: 647
    • 5b Searle PA, Richter RK, Molinski TF. J. Org. Chem. 1996; 61: 4073
  • 6 Nagatsu A, Kajitani H, Sakakibara J. Tetrahedron Lett. 1995; 36: 4097

    • For reviews on isocyanides, see:
    • 7a Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VYu. Chem. Rev. 2015; 115: 2698
    • 7b Van Leusen D, Van Leusen AM. Org. React. (N. Y.) 2001; 57: 417

      For other examples of oxazole synthesis, including the use of isocyanides, see:
    • 8a Robinson R. J. Chem. Soc., Trans. 1909; 95: 2167
    • 8b Gabriel S. Ber. Dtsch. Chem. Ges. 1910; 43: 134
    • 8c Wiley RH. Chem. Rev. 1945; 37: 401
    • 8d Nunami K.-I, Suzuki M, Yoneda N. J. Org. Chem. 1979; 44: 1887
    • 8e van de Coevering R, Kuil M, Gebbink RJ. M. K, van Koten G. Chem. Commun. 2002; 1636
    • 8f Sladojevich F, Trabocchi A, Guarna A, Dixon DJ. J. Am. Chem. Soc. 2011; 133: 1710
    • 8g Franchino A, Jakubec P, Dixon DJ. Org. Biomol. Chem. 2016; 14: 93
    • 8h Zhang M.-Z, Jia C.-Y, Gu Y.-C, Mulholland N, Turner S, Beattie D, Zhang W.-H, Yang G.-F, Clough J. Eur. J. Med. Chem. 2017; 126: 669
    • 8i Suzuki M, Iwasaki T, Miyoshi M, Okumura K, Matsumoto K. J. Org. Chem. 1973; 38: 3571
    • 8j Huang W.-S, Zhang Y.-X, Yuan C.-Y. Synth. Commun. 1996; 26: 1149
    • 8k Baumann M, Baxendale IR, Ley SV, Smith CD, Tranmer GK. Org. Lett. 2006; 8: 5231
    • 8l El Kaim L, Grimaud L, Schiltz A. Tetrahedron Lett. 2009; 50: 5235
    • 8m Dos Santos A, El Kaim L, Grimaud L, Ronsseray C. Chem. Commun. 2009; 3907
    • 8n Ma Y, Yan Z, Bian C, Li K, Zhang X, Wang M, Gao X, Zhang H, Lei A. Chem. Commun. 2015; 51: 10524
    • 8o Liao J.-Y, Ni Q, Zhao Y. Org. Lett. 2017; 19: 4074
    • 8p Pan J, Li X, Lin F, Liu J, Jiao N. Chem 2018; 4: 1427
  • 9 5-Pentyl-4-tosyl-1,3-oxazole (3a); Typical Procedure CH2Cl2 (4 mL) was added to a 10 mL vial charged with isocyanide 1a (0.4 mmol, 1.0 equiv) at r.t. under N2. Siloxyalkyne 2a (0.48 mmol, 1.2 equiv) and a 1.0 M solution of TBAF in THF (0.4 mmol, 1.0 equiv) were added sequentially, and the mixture was stirred at r.t. for 4 h. Next, H2O (5 mL) was added, and the layers were separated. The aqueous layer was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated. The residue was purified by chromatography [silica gel, hexanes–EtOAc (10:1)] to give a pale-yellow semisolid; yield: 97.9 mg (83%). IR (neat): 3134, 3057, 2932, 2865, 1589, 1516, 1455, 1325, 1145, 1084 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.3 Hz, 2 H), 7.71 (s, 1 H), 7.32 (d, J = 8.0 Hz, 2 H), 3.08 (t, J = 7.6 Hz, 2 H), 2.40 (s, 3 H), 1.75–1.62 (m, 2 H), 1.38–1.26 (m, 4 H), 0.92–0.83 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 157.2, 149.4, 144.7, 137.3, 135.1, 129.7, 127.9, 31.0, 27.5, 25.2, 22.1, 21.5, 13.8. HRMS (CI): m/z [M + H]+ calcd for C15H20NO3S: 294.1164; found: 294.1158.
  • 10 CCDC 1869561 contains the supplementary crystallographic data for compound 3i. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.