Synthesis 2019; 51(03): 612-628
DOI: 10.1055/s-0037-1610328
short review
© Georg Thieme Verlag Stuttgart · New York

Sulfoxonium Ylide Derived Metal Carbenoids in Organic Synthesis

Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway   Email: [email protected]   Email: [email protected]
,
Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway   Email: [email protected]   Email: [email protected]
› Author Affiliations
We thank the Research Council of Norway (FRINATEK Grant No. 231706 and Centre of Excellence Grant No. 262695), the Tromsø Research Foundation (Grant No. TFS2016 KHH), and Nordforsk (Grant No. 85378). J.V. thanks the CHOCO-UiT (https://site.uit.no/choco/) research team PI: Kathrin H. Hopmann/A.Bayer for research and financial support.
Further Information

Publication History

Received: 14 September 2018

Accepted after revision: 17 October 2018

Publication Date:
12 December 2018 (online)


Abstract

As pioneered by Corey and Chaykovsky, sulfoxonium ylides have had widespread application in organic synthesis for more than a half century. In most of the reactions, sulfoxonium ylides were used to react with electrophiles. Under suitable reaction conditions these ylides can generate metal carbenoids and react with nucleophiles. By combining the typical reactivity of sulfoxonium ylides with transition-metal catalysis, a growing number of investigations have expanded their application in organic synthesis. This review provides an update on the preparation of sulfoxonium ylides and their applications in carbenoid transfer reactions.

1 Introduction

2 Preparation of Sulfoxonium Ylides

3 Investigation for Carbenoid Formation from Sulfoxonium Ylide

4 X–H (X = N, O, S, C) Functionalization Reactions

5 Polymerizaton of Carbenoids Generated from Sulfoxonium Ylides

6 Conclusion and Perspective

 
  • References

    • 1a Dötz KH. Angew. Chem. Int. Ed. Engl. 1984; 23: 587
    • 1b Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 2a Brookhart M, Studabaker WB. Chem. Rev. 1987; 87: 411
    • 2b Davies HM. L, Huby NJ. S, Cantrell WR, Olive JL. J. Am. Chem. Soc. 1993; 115: 9468
    • 3a Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 3b Davies HM. L. Curr. Org. Chem. 1998; 2: 463
  • 4 Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 5a Guo X, Hu W. Acc. Chem. Res. 2013; 46: 2427
    • 5b Zhang Y, Wang J. Coord. Chem. Rev. 2010; 254: 941
  • 6 Liu Z, Wang J. J. Org. Chem. 2013; 78: 10024
    • 7a Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091
    • 7b Zhang Z, Wang J. Tetrahedron 2008; 64: 6577
    • 7c Zhang Y, Wang J. Chem. Commun. 2009; 5350
    • 7d Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 8a Moore JA, Ree DE. Org. Synth. 1961; 41: 16
    • 8b Bio MM, Javadi G, Song ZJ. Synthesis 2005; 19
    • 8c Proctor LD, Warr AJ. Org. Process Res. Dev. 2002; 6: 884
  • 9 Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
  • 10 Burtoloso AC. B, Dias RM. P, Leonarczyk IA. Eur. J. Org. Chem. 2013; 5005
  • 11 Trost BM, Melvin LS. Sulfur Ylides: Emerging Synthetic Intermediates . Academic Press; New York: 1975
  • 12 Baldwin JE, Adlington RM, Godfrey CR. A, Gollins DW, Vaughan JG. J. Chem. Soc., Chem. Commun. 1993; 1434
  • 13 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 867
  • 14 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1964; 86: 1640
    • 15a Johnson CR, Haake M, Schroeck CW. J. Am. Chem. Soc. 1970; 92: 6594
    • 15b Johnson CR, Rogers PE. J. Org. Chem. 1973; 38: 1798
    • 15c Johnson CR, Janiga ER, Haake M. J. Am. Chem. Soc. 1968; 90: 3890
  • 16 Nozaki H, Tunemoto D, Matubara S, Kondô K. Tetrahedron 1967; 23: 545
  • 17 Baldwin JE, Adlington RM, Godfrey CR. A, Gollins DW, Smith ML, Russel AT. Synlett 1993; 51
  • 18 Kaiser C, Trost BM, Beeson J, Weinstock J. J. Org. Chem. 1965; 30: 3972
  • 19 Ide J, Kishida Y. Tetrahedron Lett. 1966; 1787
  • 20 Tamura Y, Miyamoto T, Nishimura T, Eiho J, Kita Y. J. Chem. Soc., Perkin Trans. 1 1974; 102
  • 21 Bradbury RH, Gilchrist TL, Rees CW. J. Chem. Soc., Perkin Trans. 1 1981; 3225
  • 22 Marino JP, Kaneko T. J. Org. Chem. 1974; 39: 3175
  • 23 Tamuru Y, Miyamoto T, Kiyokawa H, Kita Y. J. Chem. Soc., Perkin Trans. 1 1974; 1125
  • 24 Faragher R, Gilchrist TL. J. Chem. Soc., Perkin Trans. 1 1977; 1196
  • 25 Yamanaka H, Konno S, Sakamoto T, Niitsuma S, Noji S. Chem. Pharm. Bull. 1981; 29: 2837
  • 26 Yamanaka H, Niitsuma S, Sakamoto T. Heterocycles 1978; 10
  • 27 Ando W, Yagihara T, Tozune S, Nakaido S, Migita T. Tetrahedron Lett. 1969; 1979
  • 28 Dost F, Gosselck J. Tetrahedron Lett. 1970; 5091
  • 29 Moody CJ, Slawin AM. Z, Taylor RJ, Williams DJ. Tetrahedron Lett. 1988; 29: 6009
  • 30 Zhu C, Yoshimura A, Ji L, Wei Y, Nemykin VN, Zhdankin VV. Org. Lett. 2012; 14: 3170
  • 31 Vaitla J, Hopmann KH, Bayer A. Org. Lett. 2017; 19: 6688
  • 32 Mangion IK, Nwamba IK, Shevlin M, Huffman MA. Org. Lett. 2009; 11: 3566
  • 33 Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
  • 34 Baratta W, Zotto AD. Chem. Commun. 1997; 2163
  • 35 Yudin AK. Catalyzed Carbon–Heteroatom Bond Formation . Wiley-VCH; Weinheim, Germany: 2011
  • 36 Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . Wiley; New York: 1998
  • 37 Trost BM. J. Am. Chem. Soc. 1967; 89: 138
  • 38 Cohen T, Herman G, Chapman TM, Kuhn D. J. Am. Chem. Soc. 1974; 96: 5627
  • 39 Cimetière B, Julia M. Synlett 1991; 271
  • 40 Mangion IK, Weisel M. Tetrahedron Lett. 2010; 51: 5490
  • 41 Mangion IK, Ruck RT, Rivera N, Huffman MA, Shevlin M. Org. Lett. 2011; 13: 5480
  • 42 Molinaro C, Bulger PG, Lee EE, Kosjek B, Lau S, Gauvreau D, Howard ME, Wallace DJ, O’Shea PD. J. Org. Chem. 2012; 77: 2299
  • 43 Phelps AM, Chan VS, Napolitano JG, Krabbe SW, Schomaker JM, Shekhar S. J. Org. Chem. 2016; 81: 4158
  • 44 Cheng J, Wu X, Sun S, Yu J.-T. Synlett 2018; DOI: 10.1055/s-0037-1610263.
  • 45 Eberlin MN, Kascheres C. J. Org. Chem. 1988; 53: 2084
  • 46 Barday M, Janot C, Halcovitch NR, Muir J, Aissa C. Angew. Chem. Int. Ed. 2017; 56: 13117
  • 47 Xu Y, Zhou X, Zheng G, Li X. Org. Lett. 2017; 19: 5256
  • 48 Xu Y, Yang X, Zhou X, Kong L, Li X. Org. Lett. 2017; 19: 4307
  • 49 Zheng G, Tian M, Xu Y, Chen X, Li X. Org. Chem. Front. 2018; 5: 998
  • 50 Cheng J, Yang R, Wu X, Sun S, Yu J.-T. Synthesis 2018; 50: 3487
  • 51 Xie H, Lan J, Gui J, Chen F, Jiang H, Zeng W. Adv. Synth. Catal. 2018; 360: 3534
  • 52 Chen G, Zhang X, Jia R, Li B, Fan X. Adv. Synth. Catal. 2018; 360: 3781
  • 53 Halskov KS, Witten MR, Hoang GL, Mercado BQ, Ellman JA. Org. Lett. 2018; 20: 2464
  • 54 Hoang GL, Ellman JA. Tetrahedron 2018; 74: 3318
    • 55a Oh H, Han S, Pandey AK, Han SH, Mishra NK, Kim S, Chun R, Kim HS, Park J, Kim IS. J. Org. Chem. 2018; 83: 4070
    • 55b Zhu J, Sun S, Cheng J. Tetrahedron Lett. 2018; 59: 2284
  • 56 Wu X, Xiong H, Sun S, Cheng J. Org. Lett. 2018; 20: 1396
  • 57 Hu P, Zhang Y, Xu Y, Yang S, Liu B, Li X. Org. Lett. 2018; 20: 2160
  • 58 Xu Y, Zheng G, Yang X, Li X. Chem. Commun. 2018; 670
  • 59 Suarez AI. O, del Río MP, Remerie K, Reek JN. H, de Bruin B. ACS Catal. 2012; 2: 2046