Synlett 2019; 30(02): 119-123
DOI: 10.1055/s-0037-1610301
synpacts
© Georg Thieme Verlag Stuttgart · New York

Multiple Diels–Alder Transformations in Linear π-Conjugated Systems

,
Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel   Email: ori.gidron@mail.huji.ac.il
› Author Affiliations
Research in our group is supported by Israel Science Foundation (1789/16), German-Israeli Foundation for Scientific Research and ­Development (GIF) (I-2473-302.5/2017), and the Ministry of Science and Technology (MOST)(3-13692).
Further Information

Publication History

Received: 27 August 2018

Accepted after revision: 17 September 2018

Publication Date:
09 October 2018 (online)


Abstract

π-Conjugated molecules are the active materials in organic electronics, yet the range of available materials is limited by the nontrivial, multistep synthetic process required to obtain long π-conjugated backbones. Here, Diels–Alder cycloaddition and its reactivity and selectivity are evaluated as a means for obtaining long, novel, π-conjugated backbones. Particular attention is paid to the Diels–Alder conjugation products of furans, such as selectively substituted arenes and, potentially, carbon nanoribbons.

1 Introduction

2 Aromatic Transformations by Diels–Alder Cycloaddition

3 The Question of Regioselectivity

4 Outlook

 
  • References

  • 1 Bao Z. Locklin JJ. Organic Field-Effect Transistors . CRC Press; United States: 2007: 616
  • 2 Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
  • 3 Koga Y. Kaneda T. Saito Y. Murakami K. Itami K. Science 2018; 359: 435
  • 4 Nogi K. Yorimitsu H. Chem. Commun. 2017; 53: 4055
  • 5 Ito H. Ozaki K. Itami K. Angew. Chem. Int. Ed. 2017; 56: 11144
    • 6a Diamond OJ. Marder TB. Org. Chem. Front. 2017; 4: 891
    • 6b Xiao X. Hoye TR. Nat. Chem. 2018; 10: 838
  • 7 Criado A. Vilas-Varela M. Cobas A. Pérez D. Peña D. Guitián E. J. Org. Chem. 2013; 78: 12637
  • 8 Gadakh S. Shimon LJ. W. Gidron O. Angew. Chem. Int. Ed. 2017; 44: 13601
  • 9 Stępień M. Gońka E. Żyła M. Sprutta N. Chem. Rev. 2017; 117: 3479
  • 10 Bendikov M. Wudl F. Perepichka DF. Chem. Rev. 2004; 104: 4891
  • 11 Narita A. Feng X. Hernandez Y. Jensen SA. Bonn M. Yang H. Verzhbitskiy IA. Casiraghi C. Hansen MR. Koch AH. R. Fytas G. Ivasenko O. Li B. Mali KS. Balandina T. Mahesh S. De Feyter S. Müllen K. Nat. Chem. 2013; 6: 126
  • 12 Fort EH. Donovan PM. Scott LT. J. Am. Chem. Soc. 2009; 131: 16006
  • 13 Batson JM. Swager TM. Synlett 2013; 24: 2545
  • 14 Golder MR. Jasti R. Acc. Chem. Res. 2015; 48: 557
  • 15 Povie G. Segawa Y. Nishihara T. Miyauchi Y. Itami K. Science 2017; 356: 172
  • 16 Diels O. Alder K. Ber. Dtsch. Chem. Ges. 1929; 62: 554
  • 17 Gidron O. Bendikov M. Angew. Chem. Int. Ed. 2014; 53: 2546
  • 18 Chen X. Dam MA. Ono K. Mal A. Shen H. Nutt SR. Sheran K. Wudl F. Science 2002; 295: 1698
  • 19 McElhanon JR. Wheeler DR. Org. Lett. 2001; 3: 2681
  • 20 Biermann D. Schmidt W. J. Am. Chem. Soc. 1980; 102: 3163
  • 21 v. Ragué Schleyer P. Manoharan M. Jiao H. Stahl F. Org. Lett. 2001; 3: 3643
  • 22 Alder K. Schumacher M. Liebigs Ann. Chem. 1950; 570: 178
  • 23 Turner CI. Paddon-Row MN. Willis AC. Sherburn MS. J. Org. Chem. 2005; 70: 1154
  • 24 Gidron O. Shimon LJ. W. Leitus G. Bendikov M. Org. Lett. 2012; 14: 502
  • 25 Clar E. The Aromatic Sextet . John Wiley & Sons; London, New York: 1972: 128
  • 26 Zhang H. Wakamiya A. Yamaguchi S. Org. Lett. 2008; 10: 3591