Synlett 2018; 29(16): 2185-2190
DOI: 10.1055/s-0037-1610272
letter
© Georg Thieme Verlag Stuttgart · New York

Combining Oxoammonium Cation Mediated Oxidation and Photoredox Catalysis for the Conversion of Aldehydes into Nitriles

Jyoti Nandi
,
Mason L. Witko
,
Department of Chemistry, University of Connecticut (Ringgold ID: RIN7712), 55 North Eagleville Road, Storrs, CT 06269, USA   eMail: nicholas.leadbeater@uconn.edu
› Institutsangaben
This work was supported by University of Connecticut Office of Undergraduate Research.
Weitere Informationen

Publikationsverlauf

Received: 25. Juli 2018

Accepted after revision: 14. August 2018

Publikationsdatum:
12. September 2018 (online)


Abstract

A method to oxidize aromatic aldehydes to nitriles has been developed. It involves a dual catalytic system of 4-acetamido-TEMPO and visible-light photoredox catalysis. The reaction is performed using ammonium persulfate as both the terminal oxidant and nitrogen source.

Supporting Information

 
  • References and Notes

    • 1a Fleming FF. Yao L. Ravikumar PC. Funk L. Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1b Zhou LY. Zhang JL. Sun SL. Ge F. Mao SY. Ma Y. Lui ZH. Dai YJ. Yuan S. J. Agric. Food Chem. 2014; 62: 9957
    • 1c Collett MG. Stegelmeier BL. Tapper BA. J. Agric. Food Chem. 2014; 62: 7370
    • 2a Larock RC. In Comprehensive Organic Transformations . Vol. 1. VCH Publishers; New York: 1989: 933
    • 2b Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds. Wiley; New York: 1983
    • 2c Niemeier JK. Rothhaar RR. Vicenzi JT. Werner JA. Org. Process Res. Dev. 2014; 18: 410
  • 3 Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633

    • For reviews of metal-catalyzed approaches, see:
    • 4a Anbarasan P. Schareina T. Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 4b Ellis GP. Romney-Alexander TM. Chem. Rev. 1987; 87: 779
    • 5a Sundermeier M. Zapf A. Mutyala S. Baumann W. Sans J. Weiss S. Beller M. Chem. Eur. J. 2003; 9: 1828
    • 5b Kim J. Kim HJ. Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
    • 5c Takagi K. Okamoto T. Sakakibara Y. Ohno A. Oka S. Hayama N. Bull. Chem. Soc. Jpn. 1976; 49: 3177

      For initial reports, see:
    • 6a Schareina T. Zapf A. Beller M. Chem. Commun. 2004; 12: 1388
    • 6b Weissman SA. Zewge D. Chen C. J. Org. Chem. 2005; 70: 1508

    • For examples, see:
    • 6c Richardson J. Mutton SP. J. Org. Chem. 2018; 83: 4922
    • 6d Senecal TD. Shu W. Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 10035
    • 7a Lambert KM. Bobbitt JM. Eldirany SA. Wiberg KB. Bailey WF. Org. Lett. 2014; 16: 6484
    • 7b Kim J. Stahl SS. ACS Catal. 2013; 3: 1652
    • 7c Lambert KM. Bobbitt JM. Eldirany SA. Kissane LE. Sheridan RK. Stempel ZD. Sternberg Francis H. Bailey WF. Chem. Eur. J. 2016; 22: 5156
    • 8a Dornan LM. Cao Q. Flanagan JC. A. Crawford JJ. Cook MJ. Muldoon MJ. Chem. Commun. 2013; 49: 6030
    • 8b Tao C. Liu F. Zhu Y. Liu W. Cao Z. Org. Biomol. Chem. 2013; 11: 3349
    • 8c Yin W. Wang C. Huang Y. Org. Lett. 2013; 15: 1850
    • 8d Oishi T. Yamaguchi K. Mizuno N. Angew. Chem. Int. Ed. 2009; 48: 6286
    • 8e Capdevielle P. Lavigne A. Maumy M. Synthesis 1989; 451
    • 8f Fang C. Li M. Hu X. Mo W. Hu B. Sun N. Jin L. Shen Z. Adv. Synth. Catal. 2016; 358: 1157

      For reviews, see:
    • 9a Leadbeater NE. Bobbitt JM. Aldrichimica Acta 2014; 47: 65
    • 9b Kelly CB. Synlett 2013; 24: 527
    • 9c Bobbitt JM. Bruckner C. Merbouh N. Org. React. 2010; 74: 103
    • 10a Mercadante MA. Kelly CB. Bobbitt JM. Tilley LJ. Leadbeater NE. Nat. Protoc. 2013; 8: 666
    • 10b Kelly CB. Mercadante MA. Wiles RJ. Leadbeater NE. Org. Lett. 2013; 15: 2222
    • 10c Bobbitt JM. Bartelson AL. Bailey WF. Hamlin TA. Kelly CB. J. Org. Chem. 2014; 79: 1055
    • 10d Hamlin TA. Kelly CB. Leadbeater NE. Eur. J. Org. Chem. 2013; 3658
    • 10e Kelly CB. Mercadante MA. Hamlin TA. Fletcher MH. Leadbeater NE. J. Org. Chem. 2012; 77: 8131
    • 10f Eddy NA. Kelly CB. Mercadante MA. Leadbeater NE. Fenteany G. Org. Lett. 2012; 14: 498
    • 10g Pradhan PP. Bobbitt JM. Bailey WF. J. Org. Chem. 2009; 74: 9524
    • 10h Qui J. Pradhan PP. Blanck NB. Bobbitt JM. Bailey WF. Org. Lett. 2012; 14: 350
    • 10i Ovian JM. Kelly CB. Pistritto VA. Leadbeater NE. Org. Lett. 2017; 19: 1286
    • 10j Miller SA. Bobbitt JM. Leadbeater NE. Org. Biomol. Chem. 2017; 15: 2817
  • 11 Kelly CB. Lambert KM. Mercadante MA. Ovian JM. Bailey WF. Leadbeater NE. Angew. Chem. Int. Ed. 2015; 54: 4241

    • See, for example:
    • 12a Ciriminna R. Pagliaro M. Org. Process Res. Dev. 2010; 14: 245
    • 12b Ciriminna R. Pagliaro M. Org. Process Res. Dev. 2010; 14: 245
  • 13 Noh J. Kim J. J. Org. Chem. 2015; 80: 11624

    • For reviews, see:
    • 14a Twilton J. Le C. Zhang P. Shaw MH. Evans RW. MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 52
    • 14b Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 14c Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 14d Prier CK. Prier Rankic DA. Macmillan DW. C. Chem. Rev. 2013; 113: 5322
  • 15 Pistritto Vincent A. Paolillo JM. Bisset KA. Leadbeater NE. Org. Biomol. Chem. 2018; 16: 4715
  • 16 Nandi J. Ovian JM. Kelly CB. Leadbeater NE. Org. Biomol. Chem. 2017; 15: 8295
  • 17 McManus JB. Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
    • 18a Yang X. Fan Z. Shen Z. Li M. Electrochim. Acta 2017; 226: 53
    • 18b Fan Z. Yang X. Chen C. Shenz Z. Li M. J. Electrochem. Soc. 2017; 164: G54
    • 18c Chen Q. Fang C. Shen Z. Li M. Electrochem. Commun. 2016; 64: 51
    • 19a McAllister GD. Wilfred CD. Taylor RJ. K. Synlett 2002; 1291
    • 19b Yamazaki S. Yamazaki Y. Chem. Lett. 1990; 571
  • 20 Chu L. Lipshultz JM. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
  • 21 Dai C. Meschini F. Narayanam JM. R. Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
  • 22 Representative Procedure – Preparation of 4-Methoxybenzonitrile (4a) To an oven-dried 2 ml reaction vial equipped with a stir bar was added the aldehyde 3a (0.136 g, 1 mmol, 1 equiv) and pyridine (0.474 g, 6.0 mmol, 6 equiv), followed by acetonitrile (2 ml, 0.5 M in 3a). The vial was then charged with Ru(bpy)3(PF6)2 (0.017 g, 0.02 mmol, 0.02 equiv), 2 (0.043 g, 0.20 mmol, 0.20 equiv), (NH4)2S2O8(0.501 g, 2.2 mmol, 2.2 equiv), and activated 3 Å molecular sieves (ca. 0.2 g), sealed with a cap, and irradiated in blue LED reactor for 24 h. In the absence of fan cooling, the temperature of the reaction mixture plateaued at approximately 50 ℃. After the irradiation was complete, the reaction mixture was quenched with EtOAc and transferred to a separatory funnel. Further EtOAc (30 ml) was added, followed by 0.5 M HCl(aq) (30 ml). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 20 ml). The organic layers were then combined and washed with 0.5 M 0.5 M HCl(aq) (2 × 20 ml), saturated aqueous sodium bicarbonate (2 × 20 ml), and finally brine (20 ml). The organic layer was then dried over sodium sulfate and the solvent removed in vacuo to afford the crude product. The resulting crude mixture was adhered to silica gel using 1.5 weight equivalents of SiO2(relative to the theoretical yield). The dry-packed material was gently added on top of a silica gel plug. The plug was washed with an excess of hexanes (ca. 5 column volumes). The desired product was eluted off the plug via a 90:10 by volume mixture of hexanes/EtOAc (3–4 column volumes). The solvent was removed in vacuo by rotary evaporation affording the pure nitrile 3c (0.066 g, 50%) as a white solid. 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 8.9 Hz, 2 H), 6.95 (d, J = 8.9 Hz, 2 H), 3.86 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 162.98, 134.11, 119.34, 114.88, 104.13, 55.67 ppm. IR (neat, ATR): ν = 2941, 2215, 1603, 1506, 1457, 1303, 1254, 1173, 1020, 826, 681, 544, 497 cm–1. MS (EI): m/z (%) = 133 (100) [M+], 118 (10), 104 (12), 103 (41), 90 (49), 76 (10), 64 (14), 63 (16).
  • 23 To eliminate any unreacted aldehyde, we followed: Boucher MM. Furigay MH. Quach Phong K. Brindle CS. Org. Process Res. Dev. 2017; 21: 1394
    • 24a Rafiee M. Miles KC. Stahl SS. J. Am. Chem. Soc. 2015; 137: 14751
    • 24b Hickey DP. Schiedler DA. Matanovic I. Doan PV. Atanassov P. Minteer SD. Sigman MS. J. Am. Chem. Soc. 2015; 137: 16179
    • 25a Yuan Z. Zhou P. Liu X. Wang Y. Liu B. Li X. Zhang Z. Ind. Eng. Chem. Res. 2017; 56: 14766
    • 25b Gomez S. Peters JA. van der Waal JC. Zhou W. Maschmeyer T. Catal. Lett. 2002; 84: 1
    • 26a Jin J. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565
    • 26b Huie RE. Clifton CL. Kafafi SA. J. Phys. Chem. 1991; 95: 9336