CC BY 4.0 · SynOpen 2018; 02(03): 0240-0245
DOI: 10.1055/s-0037-1610216
psp
Copyright with the author

Separation of the 5- and 6-Carboxy Regioisomers of ROX and JOE Dyes with Examples of N-(3-Azidopropyl)amide Synthesis

Nadezhda S. Baleeva
a   Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia   Email: baranovmikes@gmail.com
,
Marina B. Zagudaylova
,
a   Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia   Email: baranovmikes@gmail.com
b   Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997, Moscow, Russia
› Author Affiliations
The authors gratefully acknowledge support from the Russian Foundation for Basic Research, grant 18-03-00094-a. Experiments were in part carried out using the equipment provided by the IBCH сore facility (CKP IBCH, supported by Russian Ministry of Education and Science, grant RFMEFI62117X0018).
Further Information

Publication History

Received: 23 May 2018

Accepted after revision: 01 July 2018

Publication Date:
25 July 2018 (online)


Abstract

Despite the widespread applications of various rhodamine and fluorescein 5- and 6-carboxy derivatives, the preparation of their pure regioisomers, in particular cases, remains a complex task. In the present paper we propose optimized approaches to the synthesis and separation of these isomers of ROX and JOE dyes, and also demonstrate their applicability in the synthesis of the corresponding N-(3-azidopropyl)amides.

Supporting Information

 
  • References

    • 1a Christie RM. Rev. Prog. Color. 1993; 23: 1
    • 1b Schwander H. Hebdrix С. Ullmann’s Encyclopedia of Industrial Chemistry 2000; 15: 367
    • 1c Beija M. Afonso CA. M. Martinho JM. G. Chem. Soc. Rev. 2009; 38: 2410
    • 1d Terai T. Nagano T. Eur. J. Physiol. 2013; 46: 347
    • 3a Kvach MV. Stepanova IA. Prokhorenko IA. Stupak AP. Bolibrukh DA. Korshun VA. Shmanai VV. Bioconjugate Chem. 2009; 20: 1673
    • 3b Fu M. Zhang X. Wang J. Chen H. Gao Y. Curr. Org. Chem. 2016; 20: 1584
    • 4a Lyttle MH. Carter TG. Cook RM. Org. Process Res. Dev. 2001; 5: 45
    • 4b Tsybulsky DA. Kvach MV. Stepanova IA. Korshun VA. Shmanai VV. J. Org. Chem. 2012; 77: 977
    • 4c Nåbo LJ. Madsen CS. Jensen KJ. Kongsted J. Astakhova K. ChemBioChem 2015; 16: 1163
    • 5a Dwight SJ. Levin S. Org. Lett. 2016; 18: 5316
    • 5b Dwight SJ. Levin S. PCT Int. Appl. WO 2017/059308, 2017
    • 5c Gemma Mudd G. Pérez I. Fethers N. Dodd PG. Barbeau O. Auer M. Methods Appl. Fluoresc. 2015; 4: 045002
  • 6 Uddin MJ. Marnett LJ. Org. Lett. 2008; 10: 4799
    • 7a Sun W.-C. Gee KR. Klaubert DH. Haugland RP. J. Org. Chem. 1997; 62: 6469
    • 7b Wu X. Tian M. Fan W. Pan Y. Zhai Y. Niu Y. Li C. Lu T. Mei Q. J. Fluoresc. 2014; 24: 775
    • 7c Tian M. Wu X. Zhang B. Li J. Shi Z. Bioorg. Med. Chem. Lett. 2008; 18: 1977
    • 8a Liboska R. Ligasova A. Strunin D. Rosenberg I. Koberna K. PLoS ONE 2012; e51679
    • 8b Astakhova K. Wengel J. Chem. Eur. J. 2012; 19: 1112
    • 8c Faulds K. Smith E. Graham D. Anal. Chem. 2004; 76: 412
  • 9 Farzan VM. Ulashchik EA. Martynenko-Makaev YV. Kvach MV. Aparin IO. Brylev VA. Prikazchikova TA. Maklakova SY. Majouga AG. Ustinov AV. Shipulin GA. Shmanai VV. Korshun VA. Zatsepin TS. Bioconjugate Chem. 2017; 28: 2599
    • 10a Zhang S. Fan J. Zhang S. Wang J. Wang X. Peng X. Chem. Commun. 2014; 14021
    • 10b Debnath T. Maity P. Lobo H. Singh B. Shankarling GS. Ghosh HN. Chem. Eur. J. 2014; 20: 3510
  • 11 Butkevich AN. Belov VN. Sokolov VV. Shojaei H. Sidenstein SC. Kamin D. Matthias J. Vlijm R. Engelhardt J. Hell SW. Chem. Eur. J. 2017; 23: 12114