Synthesis 2018; 50(22): 4351-4358
DOI: 10.1055/s-0037-1609754
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Enhanced, Isolable Disulfanium Salts and their Application to Thiiranium-Promoted Polyene Cyclizations

The University of Chicago, Department of Chemistry, 5735 S. Ellis Avenue, Chicago, IL 60637, USA   eMail: sasnyder@uchicago.edu
,
Hyung Min Chi
The University of Chicago, Department of Chemistry, 5735 S. Ellis Avenue, Chicago, IL 60637, USA   eMail: sasnyder@uchicago.edu
,
Kenneth C. DeBacker
The University of Chicago, Department of Chemistry, 5735 S. Ellis Avenue, Chicago, IL 60637, USA   eMail: sasnyder@uchicago.edu
,
The University of Chicago, Department of Chemistry, 5735 S. Ellis Avenue, Chicago, IL 60637, USA   eMail: sasnyder@uchicago.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 15. März 2018

Accepted after revision: 09. April 2018

Publikationsdatum:
14. Juni 2018 (eFirst)

Dedicated to Prof. Scott E. Denmark on the occasion of his 65th birthday.

Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday.

Abstract

Although electrophile-promoted polyene cyclizations have long been a mainstay transformation for the rapid and stereocontrolled preparation of varied natural products and designed molecules, efforts to effect sulfur-promoted variants have arguably lagged behind other counterparts. This state of affairs is particularly true with alkyl sulfide-based electrophiles, even in racemic variants. Herein, building on previously reported discoveries, is described a distinct and modular method to prepare a range of isolable alkyl and aryl disulfanium salts that can affect thiiranium-based polyene cyclizations in moderate to good yields. In most of the substrates probed, these reagents provide superior yields to previously reported alternatives. In addition, initial efforts to develop an asymmetric variant of the process through the use of chiral versions of these reagents are discussed.

Supporting Information

 
  • References

  • 1 For a recent review on cation-π cyclization chemistry see: Snyder SA. Levinson AM. In Comprehensive Organic Synthesis . 2nd ed., Vol. 3, Part 5; Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 268-291 ; and references cited therein
    • 2a Snyder SA. Treitler DS. Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
    • 2b Snyder SA. Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
    • 2c Snyder SA. Treitler DS. Brucks AP. Sattler W. J. Am. Chem. Soc. 2011; 133: 15898
    • 2d Snyder SA. Brucks AP. Treitler DS. Moga I. J. Am. Chem. Soc. 2012; 134: 17714
    • 2e Brucks AP. Treitler DS. Liu S.-A. Snyder SA. Synthesis 2013; 45: 1886
    • 2f Shen M. Kretschmer M. Brill ZG. Snyder SA. Org. Lett. 2016; 18: 5018
    • 3a Denmark SE. Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 3b Hartmann E. Denmark SE. Helv. Chim. Acta 2017; 100: e1700158 ; doi: 10.1002/hlca.201700158
    • 4a Denmark SE. Kornfilt DJ. P. Vogler T. J. Am. Chem. Soc. 2011; 133: 15308
    • 4b Denmark SE. Jaunet A. J. Am. Chem. Soc. 2013; 135: 6419
    • 4c Denmark SE. Chi HM. J. Am. Chem. Soc. 2014; 136: 8915
    • 5a Edstrom E. Livinghouse T. J. Chem. Soc., Chem. Commun. 1986; 279
    • 5b Edstrom E. Livinghouse T. J. Am. Chem. Soc. 1986; 108: 1334
    • 5c Edstrom E. Livinghouse T. J. Org. Chem. 1987; 52: 949
    • 5d Harring SR. Livinghouse T. J. Org. Chem. 1997; 62: 6388

    • For a more recent example, see:
    • 5e Moore JT. Soldi C. Fettinger JC. Shaw JT. Chem. Sci. 2013; 4: 292
  • 6 Schevenels FT. Shen M. Snyder SA. Org. Lett. 2017; 19: 2

    • For a review, see:
    • 7a Adams EJ. Oscarson S. Dimethyl(methylthio)sulfonium Tetrafluoroborate (DMTSF), In e-Encyclopedia of Reagents for Organic Synthesis 2005; DOI: doi: 10.1002/047084289X.rd349.pub2.

    • For the original reagent disclosure, see:
    • 7b Meerwein H. Zenner K.-F. Gipp R. Justus Liebigs Ann. Chem. 1965; 688: 67

    • For an early reagent of related design, see:
    • 7c Helmkamp GK. Cassey HN. Olsen BA. Pettitt DJ. J. Org. Chem. 1965; 30: 933

    • For representative uses in synthesis, see:
    • 7d Trost BM. Shibata T. J. Am. Chem. Soc. 1982; 104: 3225
    • 7e Trost BM. Shibata T. Martin SJ. J. Am. Chem. Soc. 1982; 104: 3228
    • 7f Caserio MC. Kim JK. J. Am. Chem. Soc. 1982; 104: 3231
    • 7g Trost BM. Martin SF. J. Am. Chem. Soc. 1984; 106: 4263
    • 7h O’Malley GJ. Cava MP. Tetrahedron Lett. 1985; 26: 6159
  • 8 Tao Z. Robb K. Zhao K. Denmark SE. J. Am. Chem. Soc. 2018; 140: 3569
  • 9 Lucchini V. Modena G. Pasquato L. J. Chem. Soc., Chem. Commun. 1994; 13: 1565
  • 11 The recent polyene cyclization paper by Denmark8 illustrates just such an example, indicating that the neighboring dimethyl substituents do not prevent effective reaction.

    • For selected examples using chiral sulfonium species see:
    • 12a Breau L. Ogilvie WW. Durst T. Tetrahedron Lett. 1990; 31: 35
    • 12b Julienne K. Metzner P. Henryon V. Greiner A. J. Org. Chem. 1998; 63: 4532
    • 12c Julienne K. Metzner P. Henryon V. J. Chem. Soc., Perkin Trans. 1 1999; 731
    • 12d Zanardi J. Leriverend C. Aubert D. Julienne K. Metzner P. J. Org. Chem. 2001; 66: 5620
    • 12e Zanardi J. Lamazure D. Minière S. Reboul V. Metzner P. J. Org Chem. 2002; 67: 9083
    • 12f Davoust M. Cantagrel F. Metzner P. Brière J.-F. Org. Biomol. Chem. 2008; 6: 1981
    • 12g Illa O. Namutebi M. Saha C. Ostovar M. Chen CC. Haddow MF. Nocquet-Thibault S. Lusi M. McGarrigle EM. Aggarwal VK. J. Am. Chem. Soc. 2013; 135: 11951

      For example, switching sulfides for certain diphosphines in this same design has led to effective generation of HCl, HBr, DCl, and DBr on laboratory scale:
    • 13a Schevenels FT. Shen M. Snyder SA. J. Am. Chem. Soc. 2017; 139: 6329

    • For a general and excellent set of reviews on the presence of sulfur in pharmaceutical molecules, see:
    • 13b Ilardi RA. Vitaku E. Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 13c Smith BR. Eastman CM. Njardarson JT. J. Med. Chem. 2014; 57: 9764
  • 14 Párkányi C. Abdelhamid AO. Heterocycles 1985; 23: 2917