CC BY-NC-ND 4.0 · Joints 2017; 05(04): 224-228
DOI: 10.1055/s-0037-1607428
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Ceramic Total Knee Arthroplasty: Ready to Go?

G. Solarino
1   Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro,” Bari, Italy
,
C. Piconi
2   National Research Council, Institute for the Science and Technology of Ceramic Materials (ISTEC-CNR), Faenza, Ravenna, Italy
,
V. De Santis
3   Department of Orthopedics and Traumatology, Catholic University, Rome, Italy
,
A. Piazzolla
1   Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro,” Bari, Italy
,
B. Moretti
1   Orthopaedics Unit, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro,” Bari, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
26 October 2017 (online)

Abstract

Total knee arthroplasty (TKA) is a well-established surgical procedure in the late stages of knee osteoarthritis. Nevertheless, this procedure is associated with a percentage of unsatisfactory results and biomechanical failures, with aseptic loosening being the most common cause of revision. Beside these problems, cutaneous and systemic hypersensitivity reactions to metals have arisen as an increasing concern after joint arthroplasties, even if allergies against implant materials are still a quite rare and not well-known problem. Ceramic composites have been recently used in prosthetic components, showing minimum wear and excellent long-term results in total hip replacement, due to their high resistance to scratching and their better wettability with respect to cobalt–chromium alloy. Furthermore, the biologic response to debris generated from these bearings is less aggressive. Knee joint simulator tests and clinical results demonstrate promising results of TKAs with ceramic components that should led to benefit for the patients.

 
  • References

  • 1 AA.VV. RIAP. Registro Italiano Artroprotesi. Third Report. Roma: Pensiero Scientifico; 2016
  • 2 AA.VV. Servizio Sanitario regionale Emilia-Romagna. Rendiconto Attività RIPO 2013: Registro Regionale di Implantologia Protesica Ortopedica. Available at: https://ripo.cineca.it
  • 3 Spencer BA, Cherian JJ, Margetas G. , et al. Patellar resurfacing versus circumferential denervation of the patella in total knee arthroplasty. Orthopedics 2016; 39 (05) e1019-e1023
  • 4 Jiang C, Liu Z, Wang Y, Bian Y, Feng B, Weng X. Posterior cruciate ligament retention versus posterior stabilization for total knee arthroplasty: a meta-analysis. PLoS One 2016; 11 (01) e0147865
  • 5 Schnaser EA, Elpers ME, Koch CN, Haas SB, Westrich GH, Wright TM. Posterior stabilized polyethylene inserts in total knee arthroplasty: a retrieval study comparing conventional to high-flexion designs. J Arthroplasty 2016; 31 (02) 495-500
  • 6 Solarino G, Spinarelli A, Carrozzo M, Piazzolla A, Vicenti G, Moretti B. Long-term outcome of low contact stress total knee arthroplasty with different mobile bearing designs. Joints 2014; 2 (03) 109-114
  • 7 Poirier N, Graf P, Dubrana F. Mobile-bearing versus fixed-bearing total knee implants. Results of a series of 100 randomised cases after 9 years follow-up. Orthop Traumatol Surg Res 2015; 101 (4, Suppl): S187-S192
  • 8 Flament EM, Berend KR, Hurst JM, Morris MJ, Adams JB, Lombardi Jr AV. Early experience with vitamin E antioxidant-infused highly cross-linked polyethylene inserts in primary total knee arthroplasty. Surg Technol Int 2016; XXIX: 334-340
  • 9 Park DH, Leong J, Palmer SJ. Total knee arthroplasty with an oxidised zirconium femoral component: a 5-year follow-up study. J Orthop Surg (Hong Kong) 2014; 22 (01) 75-79
  • 10 Oonishi H, Kim S-C, Oonishi H. , et al. Comparison of in-vivo wear between polyethylene inserts articulating against ceramic and cobalt chrome femoral component in total knee prostheses. In: Chang J-D, Billau K. , eds. Bioceramics and Alternative Bearings in Joint Arthroplasty. Darmstadt: Steinkoppf; 2007: 149-159
  • 11 Teo WZ, Schalock PC. Metal Hypersensitivity Reactions to Orthopedic Implants. Dermatol Ther 2017; 7 (01) 53-64
  • 12 Kretzer JP, Reinders J, Sonntag R. , et al. Wear in total knee arthroplasty--just a question of polyethylene? Metal ion release in total knee arthroplasty. Int Orthop 2014; 38 (02) 335-340
  • 13 Australian Orthopaedic Association. National Joint Replacement Registry. Annual Report. AOA, Adelaide. Available at: https://aoanjrr.sahmri.com/annual-reports-2016
  • 14 Middleton S, Toms A. Allergy in total knee arthroplasty: a review of the facts. Bone Joint J 2016; 98-B (04) 437-441
  • 15 Ajwani SH, Charalambous CP. Availability of total knee arthroplasty implants for metal hypersensitivity patients. Knee Surg Relat Res 2016; 28 (04) 312-318
  • 16 Piconi C, Maccauro G. Perspective and trends on bioceramics in joint replacements. In: Antoniac I. , ed. Handbook of Bioceramics and Biocomposites. Vol. 2. Berlin: Springer; 2016: 821-858
  • 17 Piconi C, Porporati AA, Streicher RM. Ceramics in THR bearings: behavior under off-normal conditions. Key Eng Mater 2015; 631: 3-7
  • 18 Eynon-Lewis NJ, Ferry D, Pearse MF. Themistocles Gluck: an unrecognised genius. BMJ 1992; 305 (6868): 1534-1536
  • 19 Lang H. Tibialplateauprothesen aus Aluminiumoxid - Indikation und Egebnisse. Hermsdorfer Technische Mitteilungen 1983; 23: 1974-1975
  • 20 Langer G. Ceramic tibial plateau of the 70s. In: Garino JP, Willmann G. , eds. Bioceramics in Joint Arthroplasty. Stuttgart: Thieme; 2002: 128-130
  • 21 Oonishi H, Oonishi H, Kim SC. Ceramic knee arthroplasty: advanced clinical experiences of 26 years. Semin Arthroplasty 2006; 17: 134-140
  • 22 Inoue H, Yakoyama Y, Tanabe G. Follow-up study of alumina ceramic knee (KC-1 type) replacement. In: Oonishi H, Aoki H, Sawai K. , eds. Bioceramics. Vol. 3. Tokio: Ishiyaku EuroAmerica; 1989: 302-307
  • 23 Lee M-C, Han J-W. Ceramic femoral prosthesis in TKA: present and future. In: Chang J-D, Billau K. , eds. Bioceramics and Alternative Bearings in Joint Arthroplasty. Darmstadt: Steinkoppf; 2007: 123-132
  • 24 Nakamura T, Oonishi E, Yasuda T, Nakagawa Y. A new knee prosthesis with Bi-Surface femoral component made of zirconia ceramic. Key Eng Mater 2004; 254/256: 607-609
  • 25 Murray MSG, Facchini A, Sicking R. , et al. Development of an advanced ceramic/titanium alloy knee joint. In: Ohgushi H, Hastings GW, Yoshikawa T. , eds. Bioceramics. Vol. 12. Singapore: World Scientific Publishing; 1999: 67-70
  • 26 Blaise L, Webb J, Calés B. Mechanical analysis of a knee prosthesis with a zirconia femoral component. Orthop Proc 2002; 84-B: 14
  • 27 Vavrík P, Landor I, Denk F. Clinical evaluation of the ceramic femoral component used for reconstruction of total knee replacement [in Czech]. Acta Chir Orthop Traumatol Cech 2008; 75 (06) 436-442
  • 28 Bal BS, Greenberg DD, Aleto TJ. Primary total knee replacement with a zirconia ceramic femoral component. In: D'Antonio JA, Dietrich M. , eds. Bioceramics and Alternative Bearings in Joint Arthroplasty. Darmstadt: Steinkoppf; 2005: 83-190
  • 29 Payten WM, Ben Nissan B. Development of a modular ceramic knee prosthesis. In: Wise D, Trantolo DJ, Lewandrowski K-U. , et al., eds. Biomaterials Engineering and Devices: Human Applications. Vol. 2. Totowa: Humana Press; 2000: 309-336
  • 30 Piconi C, Maccauro G, Pilloni L, Burger W, Muratori F, Richter HG. On the fracture of a zirconia ball head. J Mater Sci Mater Med 2006; 17 (03) 289-300
  • 31 Heimke G, Leyen S, Willmann G. Knee arthroplasty: recently developed ceramics offer new solutions. Biomaterials 2002; 23 (07) 1539-1551
  • 32 Bergschmidt P, Bader R, Kluess D. , et al. Total knee replacement system with a ceramic femoral component versus two traditional metallic designs: a prospective short-term study. J Orthop Surg (Hong Kong) 2013; 21 (03) 294-299
  • 33 Bergschmidt P, Bader R, Ganzer D. , et al. Prospective multi-centre study on a composite ceramic femoral component in total knee arthroplasty: five-year clinical and radiological outcomes. Knee 2015; 22 (03) 186-191
  • 34 Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. Int J Artif Organs 2013; 36 (01) 47-55
  • 35 Oonishi H, Ueno M, Kim SC, Oonishi H, Iwamoto M, Kyomoto M. Ceramic versus cobalt-chrome femoral components; wear of polyethylene insert in total knee prosthesis. J Arthroplasty 2009; 24 (03) 374-382
  • 36 Cristofolini L, Affatato S, Erani P, Tigani D, Viceconti M. Implant fixation in knee replacement: preliminary in vitro comparison of ceramic and metal cemented femoral components. Knee 2009; 16 (02) 101-108
  • 37 Nakamura S, Kobayashi M, Ito H, Nakamura K, Ueo T, Nakamura T. The Bi-Surface total knee arthroplasty: minimum 10-year follow-up study. Knee 2010; 17 (04) 274-278
  • 38 Nakamura S, Ito H, Nakamura K, Kuriyama S, Furu M, Matsuda S. Long-term durability of ceramic tri-condylar knee implants: a minimum 15-year follow-up. J Arthroplasty 2017; 32 (06) 1874-1879
  • 39 Nakamura S, Minoda Y, Nakagawa S. , et al. Clinical results of alumina medial pivot total knee arthroplasty at a minimum follow-up of 10years. Knee 2017; 24 (02) 434-438
  • 40 Meier E, Gelse K, Trieb K, Pachowsky M, Hennig FF, Mauerer A. First clinical study of a novel complete metal-free ceramic total knee replacement system. J Orthop Surg 2016; 11: 21
  • 41 Piconi C, Streicher RM. Forty years of ceramic-on-ceramic THR bearings. Semin Arthroplasty 2013; 24: 188-192
  • 42 Sentuerk U, von Roth P, Perka C. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients. Bone Joint J 2016; 98-B (1, suppl A): 14-17