CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2018; 22(03): 260-265
DOI: 10.1055/s-0037-1606612
Original Research
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Evaluation of the Facial Recess and Cochlea on the Temporal Bone of Stillbirths regarding the Percutaneous Cochlear Implant

Gabriela Pereira Bom Braga
1   Department of Otolaryngology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
Eloisa Gebrim
2   Department of Radiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
Ramya Balachandran
3   Department of Otolaryngology Head and Neck Surgery, Vanderbilt University, Nashville, Tennessee, United States
Jack Noble
4   Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, United States
Robert Labadie
3   Department of Otolaryngology Head and Neck Surgery, Vanderbilt University, Nashville, Tennessee, United States
Ricardo Ferreira Bento
1   Department of Otolaryngology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
› Author Affiliations
Further Information

Publication History

10 June 2017

04 August 2017

Publication Date:
25 October 2017 (online)


Introduction The literature shows that there are anatomical changes on the temporal bone anatomy during the first four years of life in children. Therefore, we decided to evaluate the temporal bone anatomy regarding the cochlear implant surgery in stillbirths between 32 and 40 weeks of gestational age using computed tomography to simulate the trajectory of the drill to the scala timpani avoiding vital structures.

Objectives To measure the distances of the simulated trajectory to the facial recess, cochlea, ossicular chain and tympanic membrane, while performing the minimally invasive cochlear implant technique, using the Improvise imaging software (Vanderbilt University, Nashville, TN, US).

Methods An experimental study with 9 stillbirth specimens, with gestational ages ranging between 32 and 40 weeks, undergoing tomographic evaluation with individualization and reconstruction of the labyrinth, facial nerve, ossicular chain, tympanic membrane and cochlea followed by drill path definition to the scala tympani. Improvise was used for the computed tomography (CT) evaluation and for the reconstruction of the structures and trajectory of the drill.

Results Range of the distance of the trajectory to the facial nerve: 0.58 to 1.71 mm. to the ossicular chain: 0.38 to 1.49 mm; to the tympanic membrane: 0.85 to 1.96 mm; total range of the distance of the trajectory: 5.92 to 12.65 mm.

Conclusion The measurements of the relationship between the drill and the anatomical structures of the middle ear and the simulation of the trajectory showed that the middle ear cavity at 32 weeks was big enough for surgical procedures such as cochlear implants. Although cochlear implantation at birth is not an indication yet, this study shows that the technique may be an option in the future.

  • References

  • 1 Baraky LR. Prevalência de surdez incapacitante no município de Juiz de Fora, Minas Gerais, Brasil [thesis]. São Paulo: Faculdade de Medicina da Universidade de São Paulo; 2011
  • 2 Bento RF, Martins GSQ, Pinna MH. Tratado de Otologia. 2 ed. São Paulo: Atheneu; 2013
  • 3 Moore BCJ. Cochlear Hearing Loss: Physiological, Psychological and Technical Issues. 2 ed. West Sussex England: John Wiley & Sons, Ltd; 2007
  • 4 Brackmann S. Arriaga. Otologic Surgery. 3 ed. Philadelphia: Saunders; 2010
  • 5 Bento RF. Introdução. In: Ricardo Ferreira Bento, Luiz Rodolpho Penna Lima Junior, Robinson Koji Tsuji, Maria Valéria Schmidt Goffi-Gomez, Danielle do Valle Silva Penna Lima e Rubens de Brito Neto. Tratado de implante coclear e próteses auditivas implantáveis. Rio de Janeiro. Thieme Publicações Ltda.; 2014: XIX-XXIV
  • 6 Weiglein AH. Postnatal development of the facial canal. An investigation based on cadaver dissections and computed tomography. Surg Radiol Anat 1996; 18 (02) 115-123
  • 7 Lloyd SKWKA, Kasbekar AV, Kenway B. , et al. Developmental changes in cochlear orientation--implications for cochlear implantation. Otol Neurotol 2010; 31 (06) 902-907
  • 8 Litton WBKC, Krause CJ, Anson BA, Cohen WN. The relationship of the facial canal to the annular sulcus. Laryngoscope 1969; 79 (09) 1584-1604
  • 9 Migirov L, Kronenberg J. Radiology of the petromastoid canal. Otol Neurotol 2006; 27 (03) 410-413
  • 10 Swarts JD, Foley S, Alper CM, Doyle WJ. A cross-sectional study of the change in mastoid geometry with age in children without a history of otitis media. Laryngoscope 2012; 122 (03) 649-653
  • 11 Cinamon U. The growth rate and size of the mastoid air cell system and mastoid bone: a review and reference. Eur Arch Otorhinolaryngol 2009; 266 (06) 781-786
  • 12 Manolis EN, Filippou DK, Tsoumakas C. , et al. Radiologic evaluation of the ear anatomy in pediatric cholesteatoma. J Craniofac Surg 2009; 20 (03) 807-810
  • 13 Moberly AC, Lowenstein JH, Nittrouer S. Early Bimodal Stimulation Benefits Language Acquisition for Children With Cochlear Implants. Otol Neurotol 2016; 37 (01) 24-30
  • 14 Achiques MT, Morant A, Muñoz N. , et al. Complicaciones y fallos de la implantación coclear. Acta Otorrinolaringol Esp 2010; 61 (06) 412-417
  • 15 Bielamowicz SACN, Coker NJ, Jenkins HA, Igarashi M. Surgical dimensions of the facial recess in adults and children. Arch Otolaryngol Head Neck Surg 1988; 114 (05) 534-537
  • 16 Fayad JN, Wanna GB, Micheletto JN, Parisier SC. Facial nerve paralysis following cochlear implant surgery. Laryngoscope 2003; 113 (08) 1344-1346
  • 17 Warren FM, Balachandran R, Fitzpatrick JM, Labadie RF. Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol 2007; 28 (03) 325-329
  • 18 Labadie RFNJ, Noble JH, Dawant BM, Balachandran R, Majdani O, Fitzpatrick JM. Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 2008; 118 (06) 1031-1039
  • 19 Wanna GB, Balachandran R, Majdani O, Mitchell J, Labadie RF. Percutaneous access to the petrous apex in vitro using customized micro-stereotactic frames based on image-guided surgical technology. Acta Otolaryngol 2009; •••: 1-6
  • 20 Majdani O, Schurzig D, Hussong A. , et al. Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol 2010; 130 (01) 31-36
  • 21 Noble JHWF, Labadie RF. , et al. Determination of drill paths for percutaneous cochlear access accounting for target positioning error. Proc SPIE 2007; 6509: 650-925
  • 22 Balachandran R, Mitchell JE, Blachon G. , et al. Percutaneous cochlear implant drilling via customized frames: an in vitro study. Otolaryngol Head Neck Surg 2010; 142 (03) 421-426
  • 23 Cohen NL. Cochlear implant soft surgery: fact or fantasy?. Otolaryngol Head Neck Surg 1997; 117 (3 Pt 1): 214-216
  • 24 Valavanis A, Kubik S, Oguz M. Exploration of the facial nerve canal by high-resolution computed tomography: anatomy and pathology. Neuroradiology 1983; 24 (03) 139-147