Semin Thromb Hemost 2018; 44(02): 135-141
DOI: 10.1055/s-0037-1606182
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Platelet RNA in Cancer Diagnostics

Lee-Ann Tjon-Kon-Fat
1   Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
,
Nik Sol
2   Cancer Center Amsterdam, Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
,
Thomas Wurdinger
3   Cancer Center Amsterdam, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
4   Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts
,
R. Jonas A. Nilsson
1   Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden
› Author Affiliations
Further Information

Publication History

Publication Date:
13 September 2017 (online)

Abstract

Platelets are involved in several steps of cancer metastasis. During this process, platelets are exposed to the tumor and its environment, thereby exchanging biomolecules with the tumor cells and resulting in tumor-mediated “education” of the platelets and a change in their RNA profile. Analysis of platelet RNA profiles or direct measurement of tumor-derived biomarkers within platelets can provide information on ongoing cancer-related processes in the individual (e.g., whether the patient has cancer, the tumor type, and possibly identify oncogenic alterations driving the disease for treatment selection). The close interaction with the disease process and the ability to respond to systemic alterations make platelets an interesting biosource for implementation in precision medicine.

 
  • References

  • 1 Junt T, Schulze H, Chen Z. , et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007; 317 (5845): 1767-1770
  • 2 Schwertz H, Köster S, Kahr WH. , et al. Anucleate platelets generate progeny. Blood 2010; 115 (18) 3801-3809
  • 3 Kaufman RM, Airo R, Pollack S, Crosby WH, Doberneck R. Origin of Pulmonary Megakaryocytes. Blood 1965; 25: 767-775
  • 4 Lefrançais E, Ortiz-Muñoz G, Caudrillier A. , et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544 (7648): 105-109
  • 5 Harker LA. The kinetics of platelet production and destruction in man. Clin Haematol 1977; 6 (03) 671-693
  • 6 Coller BS. Foreword: a brief history of ideas about platelets in health and disease. Platelets. 3rd ed. 2013: xix-xliv
  • 7 Wang Y, Andrews M, Yang Y. , et al. Platelets in thrombosis and hemostasis: old topic with new mechanisms. Cardiovasc Hematol Disord Drug Targets 2012; 12 (02) 126-132
  • 8 Li C, Li J, Li Y. , et al. Crosstalk between platelets and the immune system: old systems with new discoveries. Adv Hematol 2012; 2012: 384685
  • 9 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
  • 10 Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 2008; 78 (01) 8-17
  • 11 Murphy AJ, Bijl N, Yvan-Charvet L. , et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med 2013; 19 (05) 586-594
  • 12 Lindemann S, Krämer B, Seizer P, Gawaz M. Platelets, inflammation and atherosclerosis. J Thromb Haemost 2007; 5 (Suppl. 01) 203-211
  • 13 Yougbaré I, Lang S, Yang H. , et al. Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage. J Clin Invest 2015; 125 (04) 1545-1556
  • 14 Italiano Jr JE, Richardson JL, Patel-Hett S. , et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008; 111 (03) 1227-1233
  • 15 Chatterjee M, Huang Z, Zhang W. , et al. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood 2011; 117 (14) 3907-3911
  • 16 Leslie M. Cell biology. Beyond clotting: the powers of platelets. Science 2010; 328 (5978): 562-564
  • 17 Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2 (12) 1091-1099
  • 18 Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014; 111 (30) E3053-E3061
  • 19 Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015; 126 (05) 582-588
  • 20 White JG. Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 2005; 16 (02) 121-131
  • 21 Lee TH, Stromberg RR, Henrard D, Busch MP. Effect of platelet-associated virus on assays of HIV-1 in plasma. Science 1993; 262 (5139): 1585-1586
  • 22 Youssefian T, Drouin A, Massé JM, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 2002; 99 (11) 4021-4029
  • 23 Lee TH, Stromberg RR, Heitman JW, Sawyer L, Hanson CV, Busch MP. Distribution of HIV type 1 (HIV-1) in blood components: detection and significance of high levels of HIV-1 associated with platelets. Transfusion 1998; 38 (06) 580-588
  • 24 Verheul HM, Lolkema MP, Qian DZ. , et al. Platelets take up the monoclonal antibody bevacizumab. Clin Cancer Res 2007; 13 (18 Pt 1): 5341-5347
  • 25 Klement GL, Yip TT, Cassiola F. , et al. Platelets actively sequester angiogenesis regulators. Blood 2009; 113 (12) 2835-2842
  • 26 Nilsson RJ, Balaj L, Hulleman E. , et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 2011; 118 (13) 3680-3683
  • 27 Clancy L, Beaulieu LM, Tanriverdi K, Freedman JE. The role of RNA uptake in platelet heterogeneity. Thromb Haemost 2017; 117 (05) 948-961
  • 28 Levin J. The evolution of mammalian platelets. Platelets. 3rd ed. 2013: 3-26
  • 29 Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol Interv 2010; 10 (04) 231-241
  • 30 Lopez-Vilchez I, Diaz-Ricart M, Galan AM. , et al. Internalization of tissue factor-rich microvesicles by platelets occurs independently of GPIIb-IIIa, and involves cd36 receptor, serotonin transporter and cytoskeletal assembly. J Cell Biochem 2016; 117 (02) 448-457
  • 31 Escolar G, Lopez-Vilchez I, Diaz-Ricart M, White JG, Galan AM. Internalization of tissue factor by platelets. Thromb Res 2008; 122 (Suppl. 01) S37-S41
  • 32 Behnke O. Electron microscopic observations on the membrane systems of the rat blood platelet. Anat Rec 1967; 158 (02) 121-137
  • 33 Chapman LM, Aggrey AA, Field DJ. , et al. Platelets present antigen in the context of MHC class I. J Immunol 2012; 189 (02) 916-923
  • 34 Placke T, Örgel M, Schaller M. , et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 2012; 72 (02) 440-448
  • 35 Bailey SE, Ukoumunne OC, Shephard EA, Hamilton W. Clinical relevance of thrombocytosis in primary care: a prospective cohort study of cancer incidence using English electronic medical records and cancer registry data. Br J Gen Pract 2017; 67 (659) e405-e413
  • 36 Stone RL, Nick AM, McNeish IA. , et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 2012; 366 (07) 610-618
  • 37 Ferroni P, Riondino S, Formica V. , et al. Venous thromboembolism risk prediction in ambulatory cancer patients: clinical significance of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio. Int J Cancer 2015; 136 (05) 1234-1240
  • 38 Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012; 379 (9826): 1591-1601
  • 39 Wang R, Stone RL, Kaelber JT. , et al. Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer. Proc Natl Acad Sci U S A 2015; 112 (46) 14266-14271
  • 40 McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 2014; 16 (08) 717-727
  • 41 Stegner D, Dütting S, Nieswandt B. Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 2014; 133 (Suppl. 02) S149-S157
  • 42 Tesfamariam B. Involvement of platelets in tumor cell metastasis. Pharmacol Ther 2016; 157: 112-119
  • 43 Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 1968; 61 (01) 46-52
  • 44 Buergy D, Wenz F, Groden C, Brockmann MA. Tumor-platelet interaction in solid tumors. Int J Cancer 2012; 130 (12) 2747-2760
  • 45 Jia Y, Zhang S, Miao L. , et al. Activation of platelet protease-activated receptor-1 induces epithelial-mesenchymal transition and chemotaxis of colon cancer cell line SW620. Oncol Rep 2015; 33 (06) 2681-2688
  • 46 Kong D, Wang Z, Sarkar SH. , et al. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 2008; 26 (06) 1425-1435
  • 47 Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139 (05) 871-890
  • 48 Miyashita T, Tajima H, Makino I. , et al. Metastasis-promoting role of extravasated platelet activation in tumor. J Surg Res 2015; 193 (01) 289-294
  • 49 Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100 (16) 9482-9487
  • 50 Chen YQ, Liu B, Tang DG, Honn KV. Fatty acid modulation of tumor cell-platelet-vessel wall interaction. Cancer Metastasis Rev 1992; 11 (3-4): 389-409
  • 51 Medina VA, Rivera ES. Histamine receptors and cancer pharmacology. Br J Pharmacol 2010; 161 (04) 755-767
  • 52 Skolnik G, Bagge U, Blomqvist G, Djärv L, Ahlman H. The role of calcium channels and serotonin (5-HT2) receptors for tumour cell lodgement in the liver. Clin Exp Metastasis 1989; 7 (02) 169-174
  • 53 Menter DG, Hatfield JS, Harkins C. , et al. Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis 1987; 5 (01) 65-78
  • 54 Chen M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp (Warsz) 2006; 54 (02) 75-84
  • 55 Palumbo JS, Talmage KE, Massari JV. , et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105 (01) 178-185
  • 56 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (02) 123-134
  • 57 Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A 2001; 98 (06) 3352-3357
  • 58 Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 2009; 69 (19) 7775-7783
  • 59 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (05) 576-590
  • 60 Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013; 24 (01) 130-137
  • 61 McCarty OJ, Mousa SA, Bray PF, Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 2000; 96 (05) 1789-1797
  • 62 Kerr BA, McCabe NP, Feng W, Byzova TV. Platelets govern pre-metastatic tumor communication to bone. Oncogene 2013; 32 (36) 4319-4324
  • 63 Erpenbeck L, Schön MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 2010; 115 (17) 3427-3436
  • 64 Malik AB. Pulmonary microembolism. Physiol Rev 1983; 63 (03) 1114-1207
  • 65 Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood 2000; 96 (13) 4216-4221
  • 66 Boucharaba A, Serre CM, Grès S. , et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004; 114 (12) 1714-1725
  • 67 Honn KV, Tang DG, Chen YQ. Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost 1992; 18 (04) 392-415
  • 68 Kuznetsov HS, Marsh T, Markens BA. , et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov 2012; 2 (12) 1150-1165
  • 69 Peterson JE, Zurakowski D, Italiano Jr JE. , et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol 2010; 85 (07) 487-493
  • 70 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005; 67 (01) 30-38
  • 71 Kisucka J, Butterfield CE, Duda DG. , et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A 2006; 103 (04) 855-860
  • 72 Chiodoni C, Iezzi M, Guiducci C. , et al. Triggering CD40 on endothelial cells contributes to tumor growth. J Exp Med 2006; 203 (11) 2441-2450
  • 73 Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68 (16) 6851-6858
  • 74 Nilsson RJ, Karachaliou N, Berenguer J. , et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget 2016; 7 (01) 1066-1075
  • 75 Corduan A, Plé H, Laffont B. , et al. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation. Thromb Haemost 2015; 113 (05) 1046-1059
  • 76 Denis MM, Tolley ND, Bunting M. , et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122 (03) 379-391
  • 77 Alhasan AA, Izuogu OG, Al-Balool HH. , et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 2016; 127 (09) e1-e11
  • 78 Guarnerio J, Bezzi M, Jeong JC. , et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016; 166 (04) 1055-1056
  • 79 Risitano A, Beaulieu LM, Vitseva O, Freedman JE. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 2012; 119 (26) 6288-6295
  • 80 Laffont B, Corduan A, Rousseau M. , et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost 2016; 115 (02) 311-323
  • 81 Angénieux C, Maître B, Eckly A, Lanza F, Gachet C, de la Salle H. Time-dependent decay of mRNA and ribosomal RNA during platelet aging and its correlation with translation activity. PLoS One 2016; 11 (01) e0148064
  • 82 Salvagno GL, Montagnana M, Degan M. , et al. Evaluation of platelet turnover by flow cytometry. Platelets 2006; 17 (03) 170-177
  • 83 Shashkin PN, Brown GT, Ghosh A, Marathe GK, McIntyre TM. Lipopolysaccharide is a direct agonist for platelet RNA splicing. J Immunol 2008; 181 (05) 3495-3502
  • 84 Schwertz H, Tolley ND, Foulks JM. , et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203 (11) 2433-2440
  • 85 Best MG, Sol N, Kooi I. , et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 2015; 28 (05) 666-676
  • 86 Best MG. Tumor-educated platelets as a blood-based liquid biopsy platform for cancer diagnostics. In: 24th International Molecular Medicine Tri-Conference; February 20–22, 2017; San Francisco, CA
  • 87 Jahr S, Hentze H, Englisch S. , et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (04) 1659-1665
  • 88 Capel B, Swain A, Nicolis S. , et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73 (05) 1019-1030
  • 89 Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 2009; 302 (06) 649-658
  • 90 Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet 2017; 49 (04) 635-642
  • 91 Gormally E, Vineis P, Matullo G. , et al. TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res 2006; 66 (13) 6871-6876
  • 92 Holstege H, Pfeiffer W, Sie D. , et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res 2014; 24 (05) 733-742
  • 93 Pedram R, Li BT, Hou C. , et al. Cell-free DNA (cfDNA) mutations from clonal hematopoiesis: Implications for interpretation of liquid biopsy tests. J Clin Oncol 2017; 35 (suppl): abstr 11526
  • 94 Morrison C. Search for liquid biopsy grail points the way to drug discovery and development gems. Nat Rev Drug Discov 2017; 16 (06) 373-374
  • 95 Aravanis AM, Lee M, Klausner RD. Next-Generation Sequencing of Circulating Tumor DNA for Early Cancer Detection. Cell 2017; 168 (04) 571-574