Semin Neurol 2017; 37(04): 419-432
DOI: 10.1055/s-0037-1604487
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

TBI and Sleep–Wake Disorders: Pathophysiology, Clinical Management, and Moving towards the Future

J. Kent Werner Jr
1   Department of Neurology, The Johns Hopkins University Hospital, Baltimore, Maryland
2   Department of Neurology, Uniformed Services University of Health Sciences, Bethesda, Maryland
,
Christian R. Baumann
3   Department of Neurology, University Hospital, Zürich, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
24 August 2017 (online)

Abstract

After experiencing a traumatic brain injury (TBI), the majority of patients will develop sleep–wake disorders (SWD). These can include insomnia, pleiosomnia, excessive daytime sleepiness, obstructive and/or central sleep apnea, circadian sleep–wake disorders, and potentially a variety of parasomnias. Untreated SWD may impede the recovery process and can negatively impact attention, executive function, and working memory. Importantly, these patients tend to misperceive their posttraumatic sleep problems. Consequently, interviews performed in standard clinical practice will not sufficiently capture SWD patients, potentially compromising safety and productivity.

In this review, the authors outline the state of current TBI-related SWD, highlighting proposed mechanisms, treatment modalities, and areas for further clinical investigation. They highlight data examining a role for slow wave sleep (SWS) in the enhancement of neural repair. They also examine the utility of enhanced cohort recruitment and SWD biomarker discovery via use of social media, smart-devices, and data-sharing networks.

 
  • References

  • 1 Wickwire EM, Williams SG, Roth T. , et al. Sleep, sleep disorders, and mild traumatic brain injury. What we know and what we need to know: findings from a national working group. Neurotherapeutics 2016; 13 (02) 403-417
  • 2 Kou Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia 2014; 62 (11) 1831-1855
  • 3 Griesbach GS, Hovda DA. Cellular and molecular neuronal plasticity. Handb Clin Neurol 2015; 128: 681-690
  • 4 Baumann CR. Sleep and traumatic brain injury. Sleep Med Clin 2016; 11 (01) 19-23
  • 5 Ouellet M-C, Beaulieu-Bonneau S, Morin CM. Sleep-wake disturbances after traumatic brain injury. Lancet Neurol 2015; 14 (07) 746-757
  • 6 Valko PO, Gavrilov YV, Yamamoto M. , et al. Damage to arousal-promoting brainstem neurons with traumatic brain injury. Sleep 2016; 39 (06) 1249-1252
  • 7 Grima N, Ponsford J, Rajaratnam SM, Mansfield D, Pase MP. Sleep disturbances in traumatic brain injury: a meta-analysis. J Clin Sleep Med 2016; 12 (03) 419-428
  • 8 von Economo C. Sleep as a problem of localization. J Nerv Ment Dis 1930; 71 (03) 249-259
  • 9 Baumann CR, Stocker R, Imhof H-G. , et al. Hypocretin-1 (orexin A) deficiency in acute traumatic brain injury. Neurology 2005; 65 (01) 147-149
  • 10 Poryazova R, Hug D, Baumann CR. Narcolepsy and traumatic brain injury: cause or consequence?. Sleep Med 2011; 12 (08) 811
  • 11 Shekleton JA, Parcell DL, Redman JR, Phipps-Nelson J, Ponsford JL, Rajaratnam SMW. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology 2010; 74 (21) 1732-1738
  • 12 Rowe RK, Striz M, Bachstetter AD. , et al. Diffuse brain injury induces acute post-traumatic sleep. PLoS One 2014; 9 (01) e82507
  • 13 Lavigne G, Khoury S, Chauny J-M, Desautels A. Pain and sleep in post-concussion/mild traumatic brain injury. Pain 2015; 156 (Suppl. 01) S75-S85
  • 14 Sinha SS. Trauma-induced insomnia: a novel model for trauma and sleep research. Sleep Med Rev 2016; 25: 74-83
  • 15 Mollayeva T, Mollayeva S, Colantonio A. The risk of sleep disorder among persons with mild traumatic brain injury. Curr Neurol Neurosci Rep 2016; 16 (06) 55
  • 16 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016; 538 (7623): 51-59
  • 17 de Lecea L, Kilduff TS, Peyron C. , et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998; 95 (01) 322-327
  • 18 Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007; 8 (03) 171-181
  • 19 Etori K, Saito YC, Tsujino N, Sakurai T. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice. Front Neurosci 2014; 8: 8
  • 20 Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 2008; 1129 (01) 275-286
  • 21 Sakai K, Crochet S. Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 2001; 104 (04) 1141-1155
  • 22 Monti JM. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 2010; 14 (05) 319-327
  • 23 Monti JM, Jantos H. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness. Rev Neurosci 2014; 25 (03) 429-437
  • 24 Gallopin T, Luppi P-H, Cauli B. , et al. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience 2005; 134 (04) 1377-1390
  • 25 Sangare A, Dubourget R, Geoffroy H, Gallopin T, Rancillac A. Serotonin differentially modulates excitatory and inhibitory synaptic inputs to putative sleep-promoting neurons of the ventrolateral preoptic nucleus. Neuropharmacology 2016; 109: 29-40
  • 26 Sharpley AL, Elliott JM, Attenburrow M-J, Cowen PJ. Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors. Neuropharmacology 1994; 33 (3-4): 467-471
  • 27 Frank MG, Stryker MP, Tecott LH. Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 2002; 27 (05) 869-873
  • 28 Martin JR, Bös M, Jenck F. , et al. 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 1998; 286 (02) 913-924
  • 29 Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004; 73 (06) 379-396
  • 30 Klose M, Stochholm K, Janukonyté J. , et al. Prevalence of posttraumatic growth hormone deficiency is highly dependent on the diagnostic set-up: results from The Danish National Study on Posttraumatic Hypopituitarism. J Clin Endocrinol Metab 2014; 99 (01) 101-110
  • 31 González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016; 7: 11395
  • 32 Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med 2016; 48 (02) 135-141
  • 33 Pilorz V, Tam SKE, Hughes S. , et al. Melanopsin regulates both sleep-promoting and arousal-promoting responses to light. PLOS Biol 2016; 14 (06) e1002482
  • 34 Comai S, Ochoa-Sanchez R, Gobbi G. Sleep-wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice. Behav Brain Res 2013; 243: 231-238
  • 35 Benleulmi-Chaachoua A, Chen L, Sokolina K. , et al. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 2016; 60 (01) 95-108
  • 36 Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science 1996; 271 (5246): 216-219
  • 37 Boeve BF, Silber MH, Saper CB. , et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 2007; 130 (Pt 11): 2770-2788
  • 38 Nizamutdinov D, Shapiro LA. Overview of traumatic brain injury: an immunological context. Brain Sci 2017; 7 (01) 11
  • 39 Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma 2010; 27 (08) 1529-1540
  • 40 Baumann CR, Werth E, Stocker R, Ludwig S, Bassetti CL. Sleep-wake disturbances 6 months after traumatic brain injury: a prospective study. Brain 2007; 130 (Pt 7): 1873-1883
  • 41 Kaufmann CN, Orff HJ, Moore RC, Delano-Wood L, Depp CA, Schiehser DM. Psychometric characteristics of the insomnia severity index in veterans with history of traumatic brain injury. Behav Sleep Med 2017; ;(January): 1-9
  • 42 Parcell DL, Ponsford JL, Redman JR, Rajaratnam SM. Poor sleep quality and changes in objectively recorded sleep after traumatic brain injury: a preliminary study. Arch Phys Med Rehabil 2008; 89 (05) 843-850
  • 43 Imbach LL, Valko PO, Li T. , et al. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial. Brain 2015; 138 (Pt 3): 726-735
  • 44 Skopin MD, Kabadi SV, Viechweg SS, Mong JA, Faden AI. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury. J Neurotrauma 2015; 32 (05) 289-296
  • 45 Morawska MM, Büchele F, Moreira CG, Imbach LL, Noain D, Baumann CR. Sleep modulation alleviates axonal damage and cognitive decline after rodent traumatic brain injury. J Neurosci 2016; 36 (12) 3422-3429
  • 46 Xie L, Kang H, Xu Q. , et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342 (6156): 373-377
  • 47 Ellenbogen JM, Hulbert JC, Jiang Y, Stickgold R. The sleeping brain's influence on verbal memory: boosting resistance to interference. PLoS One 2009; 4 (01) e4117
  • 48 Dijk D-J. Slow-wave sleep, diabetes, and the sympathetic nervous system. Proc Natl Acad Sci U S A 2008; 105 (04) 1107-1108
  • 49 Gao B, Cam E, Jaeger H, Zunzunegui C, Sarnthein J, Bassetti CL. Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep 2010; 33 (07) 879-887
  • 50 Sandsmark DK, Kumar MA, Woodward CS, Schmitt SE, Park S, Lim MM. Sleep features on continuous electroencephalography predict rehabilitation outcomes after severe traumatic brain injury. J Head Trauma Rehabil 2016; 31 (02) 101-107
  • 51 Kelly DF, McArthur DL, Levin H. , et al. Neurobehavioral and quality of life changes associated with growth hormone insufficiency after complicated mild, moderate, or severe traumatic brain injury. J Neurotrauma 2006; 23 (06) 928-942
  • 52 Cox RC, Olatunji BO. A systematic review of sleep disturbance in anxiety and related disorders. J Anxiety Disord 2016; 37: 104-129
  • 53 Lavie P. Sleep disturbances in the wake of traumatic events. N Engl J Med 2001; 345 (25) 1825-1832
  • 54 Koffel E, Kroenke K, Bair MJ, Leverty D, Polusny MA, Krebs EE. The bidirectional relationship between sleep complaints and pain: analysis of data from a randomized trial. Health Psychol 2016; 35 (01) 41-49
  • 55 Rose AR, Catcheside PG, McEvoy RD. , et al. Sleep disordered breathing and chronic respiratory failure in patients with chronic pain on long term opioid therapy. J Clin Sleep Med 2014; 10 (08) 847-852
  • 56 Linselle M, Sommet A, Bondon-Guitton E. , et al. Can drugs induce or aggravate sleep apneas? A case-noncase study in VigiBase(®), the WHO pharmacovigilance database. Fundam Clin Pharmacol 2017; 31 (03) 359-366
  • 57 Saatman KE, Duhaime A-C, Bullock R, Maas AI, Valadka A, Manley GT. ; Workshop Scientific Team and Advisory Panel Members. Classification of traumatic brain injury for targeted therapies. J Neurotrauma 2008; 25 (07) 719-738
  • 58 Tortella FC. Challenging the paradigms of experimental TBI models: from preclinical to clinical practice. Methods Mol Biol 2016; 1462: 735-740
  • 59 Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 2 (7872): 81-84
  • 60 Hawryluk GWJ, Manley GT. Classification of traumatic brain injury: past, present, and future. Handb Clin Neurol 2015; 127: 15-21
  • 61 Menon DK, Schwab K, Wright DW, Maas AI. ; Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 2010; 91 (11) 1637-1640
  • 62 Highsmith J, Stephenson AJ, Everhart DE. A Review of Assessment of Sleep Disruption in Adults Following Traumatic Brain Injury. Int J Neurorehabil 2016; 3 (04) 1-10
  • 63 Kales A, Soldatos CR, Kales JD. Taking a sleep history. Am Fam Physician 1980; 22 (02) 101-107
  • 64 Ruff RM, Iverson GL, Barth JT, Bush SS, Broshek DK. ; NAN Policy and Planning Committee. Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Arch Clin Neuropsychol 2009; 24 (01) 3-10
  • 65 Clinchot DM, Bogner J, Mysiw WJ, Fugate L, Corrigan J. Defining sleep disturbance after brain injury. Am J Phys Med Rehabil 1998; 77 (04) 291-295
  • 66 Thompson HJ, Vavilala MS, Rivara FP. Chapter 1 Common data elements and federal interagency traumatic brain injury research informatics system for TBI research. Annu Rev Nurs Res 2015; 33 (01) 1-11
  • 67 Yue JK, Vassar MJ, Lingsma HF. , et al; TRACK-TBI Investigators. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma 2013; 30 (22) 1831-1844
  • 68 King NS, Crawford S, Wenden FJ, Moss NE, Wade DT. The Rivermead Post Concussion Symptoms Questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol 1995; 242 (09) 587-592
  • 69 Tulsky DS, Kisala PA, Victorson D. , et al. TBI-QOL: development and calibration of item banks to measure patient reported outcomes following traumatic brain injury. J Head Trauma Rehabil 2016; 31 (01) 40-51
  • 70 Imbach LL, Büchele F, Valko PO. , et al. Sleep-wake disorders persist 18 months after traumatic brain injury but remain underrecognized. Neurology 2016; 86 (21) 1945-1949
  • 71 Ouellet M-C, Morin CM. Subjective and objective measures of insomnia in the context of traumatic brain injury: a preliminary study. Sleep Med 2006; 7 (06) 486-497
  • 72 Mollayeva T, Kendzerska T, Colantonio A. Self-report instruments for assessing sleep dysfunction in an adult traumatic brain injury population: a systematic review. Sleep Med Rev 2013; 17 (06) 411-423
  • 73 Fictenberg NL, Putnam SH, Mann NR, Zafonte RD, Millard AE. Insomnia screening in postacute traumatic brain injury: utility and validity of the Pittsburgh Sleep Quality Index. Am J Phys Med Rehabil 2001; 80 (05) 339-345
  • 74 Lequerica AH, Botticello AL, Lengenfelder J. , et al. Factors associated with remission of post-traumatic brain injury fatigue in the years following traumatic brain injury (TBI): a TBI model systems module study. Neuropsychol Rehabil 2016; ;(September): 1-12
  • 75 Chiu H-Y, Chen P-Y, Chuang L-P. , et al. Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth Sleepiness Scale in detecting obstructive sleep apnea: A bivariate meta-analysis. Sleep Med Rev 2016; S1087-0792(16)30127-7
  • 76 Patel P, Kim JY, Brooks LJ. Accuracy of a smartphone application in estimating sleep in children. Sleep Breath 2017; 21 (02) 505-511
  • 77 Bhat S, Ferraris A, Gupta D. , et al. Is there a clinical role for smartphone sleep apps? Comparison of sleep cycle detection by a smartphone application to polysomnography. J Clin Sleep Med 2015; 11 (07) 709-715
  • 78 Toon E, Davey MJ, Hollis SL, Nixon GM, Horne RSC, Biggs SN. Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. J Clin Sleep Med 2016; 12 (03) 343-350
  • 79 Behar J, Roebuck A, Domingos JS, Gederi E, Clifford GD. A review of current sleep screening applications for smartphones. Physiol Meas 2013; 34 (07) R29-R46
  • 80 Fietze I. Sleep applications to assess sleep quality. Sleep Med Clin 2016; 11 (04) 461-468
  • 81 Levin HS, Diaz-Arrastia RR. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol 2015; 14 (05) 506-517
  • 82 Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev 2015; 22: 23-36
  • 83 Ayalon L, Borodkin K, Dishon L, Kanety H, Dagan Y. Circadian rhythm sleep disorders following mild traumatic brain injury. Neurology 2007; 68 (14) 1136-1140
  • 84 Mitchell MD, Gehrman P, Perlis M, Umscheid CA. Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review. BMC Fam Pract 2012; 13 (01) 40
  • 85 Zachariae R, Lyby MS, Ritterband LM, O'Toole MS. Efficacy of internet-delivered cognitive-behavioral therapy for insomnia - a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev 2016; 30: 1-10
  • 86 Ho FY-Y, Chung K-F, Yeung W-F. , et al. Self-help cognitive-behavioral therapy for insomnia: a meta-analysis of randomized controlled trials. Sleep Med Rev 2015; 19: 17-28
  • 87 Kang S-G, Kang JM, Cho S-J. , et al. CBT using a mobile application synchronizable with wearable devices for insomnia treatment: a pilot study. J Clin Sleep Med 2017; 13 (04) 633-640
  • 88 Kay-Stacey M, Attarian H. Advances in the management of chronic insomnia. BMJ 2016; 354: i2123
  • 89 Sivertsen B, Omvik S, Pallesen S. , et al. Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults: a randomized controlled trial. JAMA 2006; 295 (24) 2851-2858
  • 90 Gunja N. In the Zzz zone: the effects of Z-drugs on human performance and driving. J Med Toxicol 2013; 9 (02) 163-171
  • 91 Krystal AD, Erman M, Zammit GK, Soubrane C, Roth T. ; ZOLONG Study Group. Long-term efficacy and safety of zolpidem extended-release 12.5 mg, administered 3 to 7 nights per week for 24 weeks, in patients with chronic primary insomnia: a 6-month, randomized, double-blind, placebo-controlled, parallel-group, multicenter study. Sleep 2008; 31 (01) 79-90
  • 92 Roth T, Soubrane C, Titeux L, Walsh JK. ; Zoladult Study Group. Efficacy and safety of zolpidem-MR: a double-blind, placebo-controlled study in adults with primary insomnia. Sleep Med 2006; 7 (05) 397-406
  • 93 Arbon EL, Knurowska M, Dijk D-J. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. J Psychopharmacol 2015; 29 (07) 764-776
  • 94 Walsh JK, Vogel GW, Scharf M. , et al; William Erwin C. A five week, polysomnographic assessment of zaleplon 10 mg for the treatment of primary insomnia. Sleep Med 2000; 1 (01) 41-49
  • 95 Hambrecht-Wiedbusch VS, Gauthier EA, Baghdoyan HA, Lydic R. Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation. Sleep 2010; 33 (07) 909-918
  • 96 Chinoy ED, Frey DJ, Kaslovsky DN, Meyer FG, Wright Jr KP. Age-related changes in slow wave activity rise time and NREM sleep EEG with and without zolpidem in healthy young and older adults. Sleep Med 2014; 15 (09) 1037-1045
  • 97 Thompson W, Quay TAW, Rojas-Fernandez C, Farrell B, Bjerre LM. Atypical antipsychotics for insomnia: a systematic review. Sleep Med 2016; 22: 13-17
  • 98 Vande Griend JP, Anderson SL. Histamine-1 receptor antagonism for treatment of insomnia. J Am Pharm Assoc (2003) 2012; 52 (06) e210-e219
  • 99 Schroeck JL, Ford J, Conway EL. , et al. Review of safety and efficacy of sleep medicines in older adults. Clin Ther 2016; 38 (11) 2340-2372
  • 100 Bertisch SM, Herzig SJ, Winkelman JW, Buettner C. National use of prescription medications for insomnia: NHANES 1999-2010. Sleep 2014; 37 (02) 343-349
  • 101 Krystal AD, Lankford A, Durrence HH. , et al. Efficacy and safety of doxepin 3 and 6 mg in a 35-day sleep laboratory trial in adults with chronic primary insomnia. Sleep 2011; 34 (10) 1433-1442
  • 102 Lankford A, Rogowski R, Essink B, Ludington E, Heith Durrence H, Roth T. Efficacy and safety of doxepin 6 mg in a four-week outpatient trial of elderly adults with chronic primary insomnia. Sleep Med 2012; 13 (02) 133-138
  • 103 Yeung W-F, Chung K-F, Yung K-P, Ng TH-Y. Doxepin for insomnia: a systematic review of randomized placebo-controlled trials. Sleep Med Rev 2015; 19: 75-83
  • 104 Dubey AK, Handu SS, Mediratta PK. Suvorexant: The first orexin receptor antagonist to treat insomnia. J Pharmacol Pharmacother 2015; 6 (02) 118-121
  • 105 Herring WJ, Snyder E, Budd K. , et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology 2012; 79 (23) 2265-2274
  • 106 Michelson D, Snyder E, Paradis E. , et al. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014; 13 (05) 461-471
  • 107 Kishi T, Matsunaga S, Iwata N. Suvorexant for primary insomnia: a systematic review and meta-analysis of randomized placebo-controlled trials. PLoS One 2015; 10 (08) e0136910
  • 108 Richey SM, Krystal AD. Pharmacological advances in the treatment of insomnia. Curr Pharm Des 2011; 17 (15) 1471-1475
  • 109 Rivara S, Mor M, Bedini A, Spadoni G, Tarzia G. Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders. Curr Top Med Chem 2008; 8 (11) 954-968
  • 110 Guilleminault C, Yuen KM, Gulevich MG, Karadeniz D, Leger D, Philip P. Hypersomnia after head-neck trauma: a medicolegal dilemma. Neurology 2000; 54 (03) 653-659
  • 111 Menn SJ, Yang R, Lankford A. Armodafinil for the treatment of excessive sleepiness associated with mild or moderate closed traumatic brain injury: a 12-week, randomized, double-blind study followed by a 12-month open-label extension. J Clin Sleep Med 2014; 10 (11) 1181-1191
  • 112 Kaiser PR, Valko PO, Werth E. , et al. Modafinil ameliorates excessive daytime sleepiness after traumatic brain injury. Neurology 2010; 75 (20) 1780-1785
  • 113 Jha A, Weintraub A, Allshouse A. , et al. A randomized trial of modafinil for the treatment of fatigue and excessive daytime sleepiness in individuals with chronic traumatic brain injury. J Head Trauma Rehabil 2008; 23 (01) 52-63
  • 114 Okunola-Bakare OM, Cao J, Kopajtic T. , et al. Elucidation of structural elements for selectivity across monoamine transporters: novel 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues. J Med Chem 2014; 57 (03) 1000-1013
  • 115 Wisor J. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 2013; 4: 139
  • 116 Seeman P, Guan H-C, Hirbec H. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse 2009; 63 (08) 698-704
  • 117 Maksimowski MB, Tampi RR. Efficacy of stimulants for psychiatric symptoms in individuals with traumatic brain injury. Ann Clin Psychiatry 2016; 28 (03) 156-166
  • 118 Johansson B, Wentzel A-P, Andréll P, Mannheimer C, Rönnbäck L. Methylphenidate reduces mental fatigue and improves processing speed in persons suffered a traumatic brain injury. Brain Inj 2015; 29 (06) 758-765
  • 119 Osier ND, Dixon CE. Catecholaminergic based therapies for functional recovery after TBI. Brain Res 2016; 1640 (Pt A): 15-35
  • 120 O'Phelan K, Ernst T, Park D. , et al. Impact of methamphetamine on regional metabolism and cerebral blood flow after traumatic brain injury. Neurocrit Care 2013; 19 (02) 183-191
  • 121 Rau TF, Kothiwal AS, Rova AR. , et al. Administration of low dose methamphetamine 12 h after a severe traumatic brain injury prevents neurological dysfunction and cognitive impairment in rats. Exp Neurol 2014; 253: 31-40
  • 122 Forsyth R, Jayamoni B, Paine T. Monoaminergic agonists for acute traumatic brain injury. Cochrane Database System Rev 2003; CD003984
  • 123 Karsten J, Hagenauw LA, Kamphuis J, Lancel M. Low doses of mirtazapine or quetiapine for transient insomnia: a randomised, double-blind, cross-over, placebo-controlled trial. J Psychopharmacol 2017; 31 (03) 327-337
  • 124 Zhang Z, Ferretti V, Güntan İ. , et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat Neurosci 2015; 18 (04) 553-561
  • 125 Naguy A. Clonidine use in psychiatry: panacea or panache. Pharmacology 2016; 98 (1-2): 87-92
  • 126 Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol 2015; 14 (05) 547-558
  • 127 Castriotta RJ, Murthy JN. Sleep disorders in patients with traumatic brain injury: a review. CNS Drugs 2011; 25 (03) 175-185
  • 128 Muza RT. Central sleep apnoea-a clinical review. J Thorac Dis 2015; 7 (05) 930-937
  • 129 Gilbert KS, Kark SM, Gehrman P, Bogdanova Y. Sleep disturbances, TBI and PTSD: implications for treatment and recovery. Clin Psychol Rev 2015; 40: 195-212
  • 130 Longstreth Jr WT, Koepsell TD, Ton TG, Hendrickson AF, van Belle G. The epidemiology of narcolepsy. Sleep 2007; 30 (01) 13-26
  • 131 Ohayon MM, Priest RG, Zulley J, Smirne S, Paiva T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 2002; 58 (12) 1826-1833
  • 132 Castriotta RJ, Atanasov S, Wilde MC, Masel BE, Lai JM, Kuna ST. Treatment of sleep disorders after traumatic brain injury. J Clin Sleep Med 2009; 5 (02) 137-144
  • 133 Scofield H, Roth T, Drake C. Periodic limb movements during sleep: population prevalence, clinical correlates, and racial differences. Sleep 2008; 31 (09) 1221-1227
  • 134 Verma A, Anand V, Verma NP. Sleep disorders in chronic traumatic brain injury. J Clin Sleep Med 2007; 3 (04) 357-362
  • 135 Jung Y, St Louis EK. Treatment of REM sleep behavior disorder. Curr Treat Options Neurol 2016; 18 (11) 50
  • 136 Zee PC, Attarian H, Videnovic A. Circadian rhythm abnormalities. Continuum (Minneap Minn) 2013; 19 (1 Sleep Disorders): 132-147
  • 137 Steele DL, Rajaratnam SMW, Redman JR, Ponsford JL. The effect of traumatic brain injury on the timing of sleep. Chronobiol Int 2005; 22 (01) 89-105
  • 138 Chaumet G, Quera-Salva M-A, Macleod A. , et al. Is there a link between alertness and fatigue in patients with traumatic brain injury?. Neurology 2008; 71 (20) 1609-1613
  • 139 Masel BE, Scheibel RS, Kimbark T, Kuna ST. Excessive daytime sleepiness in adults with brain injuries. Arch Phys Med Rehabil 2001; 82 (11) 1526-1532
  • 140 Buysse DJ, Reynolds III CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28 (02) 193-213
  • 141 Lequerica A, Chiaravalloti N, Cantor J. , et al. The factor structure of the Pittsburgh Sleep Quality Index in persons with traumatic brain injury. A NIDRR TBI model systems module study. NeuroRehabilitation 2014; 35 (03) 485-492
  • 142 Bastien CH, Vallières A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med 2001; 2 (04) 297-307
  • 143 Williams BR, Lazic SE, Ogilvie RD. Polysomnographic and quantitative EEG analysis of subjects with long-term insomnia complaints associated with mild traumatic brain injury. Clin Neurophysiol 2008; 119 (02) 429-438
  • 144 Ouellet M-C, Morin CM. Efficacy of cognitive-behavioral therapy for insomnia associated with traumatic brain injury: a single-case experimental design. Arch Phys Med Rehabil 2007; 88 (12) 1581-1592
  • 145 Kempf J, Werth E, Kaiser PR, Bassetti CL, Baumann CR. Sleep-wake disturbances 3 years after traumatic brain injury. J Neurol Neurosurg Psychiatry 2010; 81 (12) 1402-1405