Semin Musculoskelet Radiol 2017; 21(04): 392-402
DOI: 10.1055/s-0037-1604006
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

MRI of the Intrinsic Muscles of the Hand

Gustav Andreisek
1   Department of Radiology, Spital Thurgau, Cantonal Hospital Münsterlingen, Münsterlingen, Switzerland
2   University of Zurich, Zurich, Switzerland
,
Benedikt Kislinger
3   Department of Radiology, Spital Thurgau, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
,
Riham Dessouky
4   UT Southwestern Medical Center, Dallas, Texas
5   Department of Radiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
,
Avneesh Chhabra
4   UT Southwestern Medical Center, Dallas, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2017 (online)

Abstract

This review article reviews muscle function and anatomy, describes normal magnetic resonance (MR) imaging anatomy, and shows a spectrum of abnormal imaging findings. It covers the lumbrical, interosseous, and thenar and hypothenar muscles. The described spectrum of abnormalities includes anatomical variants, exercise-induced MR signal changes, denervation syndromes, and myositis, as well as tumors. Advanced imaging techniques are discussed at the end to provide a look at future hand muscle imaging.

 
  • References

  • 1 Viddeleer AR, Sijens PE, van Ooijen PM, Kuypers PD, Hovius SE, Oudkerk M. MR intensity measurements of nondenervated muscle in patients following severe forearm trauma. NMR Biomed 2011; 24 (07) 895-901
  • 2 Wang K, McGlinn EP, Chung KC. A biomechanical and evolutionary perspective on the function of the lumbrical muscle. J Hand Surg Am 2014; 39 (01) 149-155
  • 3 Yu JS, Habib PA. Normal MR imaging anatomy of the wrist and hand. Magn Reson Imaging Clin N Am 2004; 12 (02) 207-219 , v
  • 4 Andreisek G, Crook DW, Burg D, Marincek B, Weishaupt D. Peripheral neuropathies of the median, radial, and ulnar nerves: MR imaging features. Radiographics 2006; 26 (05) 1267-1287
  • 5 Claassen H, Schmitt O, Schulze M, Wree A. Variation in the hypothenar muscles and its impact on ulnar tunnel syndrome. Surg Radiol Anat 2013; 35 (10) 893-899
  • 6 Takamori M, Akiyama S, Yoshida K. , et al. Changes to muscle T2after single-finger exercise measured with 0.2T MR imaging. Magn Reson Med Sci 2015; 14 (04) 359-366
  • 7 Haddock B, Holm S, Poulsen JM. , et al. Assessment of muscle function using hybrid PET/MRI: comparison of (18)F-FDG PET and T2-weighted MRI for quantifying muscle activation in human subjects. Eur J Nucl Med Mol Imaging 2017; 44 (04) 704-711
  • 8 Viddeleer AR, Sijens PE, van Ooijen PM. , et al. Quantitative STIR of muscle for monitoring nerve regeneration. J Magn Reson Imaging 2016; 44 (02) 401-410
  • 9 Maurer AH, Paczolt EA, Myers AR. Diagnosis of traumatic myositis of the intrinsic muscles of the hand by the use of three-phase skeletal scintigraphy. Clin Nucl Med 1990; 15 (08) 535-538
  • 10 Timins ME. Muscular anatomic variants of the wrist and hand: findings on MR imaging. AJR Am J Roentgenol 1999; 172 (05) 1397-1401
  • 11 Garcia J, Bianchi S. Diagnostic imaging of tumors of the hand and wrist. Eur Radiol 2001; 11 (08) 1470-1482
  • 12 Ragheb D, Stanley A, Gentili A, Hughes T, Chung CB. MR imaging of the finger tendons: normal anatomy and commonly encountered pathology. Eur J Radiol 2005; 56 (03) 296-306
  • 13 May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. Radiographics 2000; 20 (Spec No): S295-S315
  • 14 Andreisek G, Kilgus M, Burg D. , et al. MRI of the intrinsic muscles of the hand: spectrum of imaging findings and clinical correlation. AJR Am J Roentgenol 2005; 185 (04) 930-939
  • 15 Shellock FG, Fleckenstein JL. Muscle physiology and pathophysiology: magnetic resonance imaging evaluation. Semin Musculoskelet Radiol 2000; 4 (04) 459-479
  • 16 Sinnatamby C. , ed. Last's Anatomy. 10th ed. Philadelphia, PA: Elsevier; 2011. :64 ff
  • 17 Jacobson MD, Raab R, Fazeli BM, Abrams RA, Botte MJ, Lieber RL. Architectural design of the human intrinsic hand muscles. J Hand Surg Am 1992; 17 (05) 804-809
  • 18 Liss FE. The interosseous muscles: the foundation of hand function. Hand Clin 2012; 28 (01) 9-12
  • 19 Barberie JE, Connell DG, Munk PL, Janzen DL. Ulnar nerve injuries of the hand producing intrinsic muscle denervation on magnetic resonance imaging. Australas Radiol 1999; 43 (03) 355-357
  • 20 Doucet BM, Griffin L. Variable stimulation patterns in younger and older thenar muscle. J Electromyogr Kinesiol 2012; 22 (02) 215-222
  • 21 Bunno Y, Onigata C, Suzuki T. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100. J Phys Ther Sci 2015; 27 (09) 2775-2778
  • 22 Seradge H, Seradge E. Median innervated hypothenar muscle: anomalous branch of median nerve in the carpal tunnel. J Hand Surg Am 1990; 15 (02) 356-359
  • 23 Wingerter S, Gupta S, Le S. , et al. Unusual origin of the flexor digiti minimi brevis muscle. Clin Anat 2003; 16 (06) 531-533
  • 24 Murphy WA, Totty WG, Carroll JE. MRI of normal and pathologic skeletal muscle. AJR Am J Roentgenol 1986; 146 (03) 565-574
  • 25 Walgenbach KJ, Krishnamurthy A, Walgenbach-Brünagel G, Lee WP. An anomalous muscle predisposing to the development of hypothenar hammer syndrome. Plast Reconstr Surg 2009; 124 (02) 197e-199e
  • 26 Fleckenstein JL, Bertocci LA, Nunnally RL, Parkey RW, Peshock RM. 1989 ARRS Executive Council Award. Exercise-enhanced MR imaging of variations in forearm muscle anatomy and use: importance in MR spectroscopy. AJR Am J Roentgenol 1989; 153 (04) 693-698
  • 27 Fleckenstein JL. Muscle water shifts, volume changes, and proton T2 relaxation times after exercise. J Appl Physiol (1985) 1993; 74 (04) 2047-2048
  • 28 Lee CH, Lee KH, Lee SH, Kim YS, Chung US. Chronic exertional compartment syndrome in adductor pollicis muscle: case report. J Hand Surg Am 2012; 37 (11) 2310-2312
  • 29 Brown JS, Wheeler PC, Boyd KT, Barnes MR, Allen MJ. Chronic exertional compartment syndrome of the forearm: a case series of 12 patients treated with fasciotomy. J Hand Surg Eur Vol 2011; 36 (05) 413-419
  • 30 O'heireamhoin S, Baker JF, Neligan M. Chronic exertional compartment syndrome of the forearm in an elite rower. Case Rep Orthop 2011; 2011: 497854
  • 31 Raphael BS, Paletta Jr GA, Shin SS. Chronic exertional compartment syndrome of the forearm in a major league baseball pitcher. Am J Sports Med 2011; 39 (10) 2242-2244
  • 32 Andreisek G, White LM, Sussman MS. , et al. T2*-weighted and arterial spin labeling MRI of calf muscles in healthy volunteers and patients with chronic exertional compartment syndrome: preliminary experience. AJR Am J Roentgenol 2009; 193 (04) W327-33
  • 33 Hiepe P, Gussew A, Rzanny R. , et al. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles. NMR Biomed 2014; 27 (08) 958-970
  • 34 Yanagisawa O, Shimao D, Maruyama K, Nielsen M. Evaluation of exercised or cooled skeletal muscle on the basis of diffusion-weighted magnetic resonance imaging. Eur J Appl Physiol 2009; 105 (05) 723-729
  • 35 Viddeleer AR, Sijens PE, van Ooyen PM, Kuypers PD, Hovius SE, Oudkerk M. Sequential MR imaging of denervated and reinnervated skeletal muscle as correlated to functional outcome. Radiology 2012; 264 (02) 522-530
  • 36 Andreisek G, Chhabra A. MR neurography: pitfalls in imaging and interpretation. Semin Musculoskelet Radiol 2015; 19 (02) 94-102
  • 37 Chhabra A, Flammang A, Padua Jr A, Carrino JA, Andreisek G. Magnetic resonance neurography: technical considerations. Neuroimaging Clin N Am 2014; 24 (01) 67-78
  • 38 Guggenberger R, Markovic D, Eppenberger P. , et al. Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 2012; 265 (01) 194-203
  • 39 Wang L, Zhao X, Gao K, Lao J, Gu YD. Reinnervation of thenar muscle after repair of total brachial plexus avulsion injury with contralateral C7 root transfer: report of five cases. Microsurgery 2011; 31 (04) 323-326
  • 40 Wessig C, Koltzenburg M, Reiners K, Solymosi L, Bendszus M. Muscle magnetic resonance imaging of denervation and reinnervation: correlation with electrophysiology and histology. Exp Neurol 2004; 185 (02) 254-261
  • 41 Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1994; (304) 78-83
  • 42 Kumar Y, Wadhwa V, Phillips L, Pezeshk P, Chhabra A. MR imaging of skeletal muscle signal alterations: systematic approach to evaluation. Eur J Radiol 2016; 85 (05) 922-935
  • 43 O'Connor MI, Bancroft LW. Benign and malignant cartilage tumors of the hand. Hand Clin 2004; 20 (03) 317-323 , vi
  • 44 Lee CH, Tandon A. Focal hand lesions: review and radiological approach. Insights Imaging 2014; 5 (03) 301-319
  • 45 Patten C, Meyer RA, Fleckenstein JL. T2 mapping of muscle. Semin Musculoskelet Radiol 2003; 7 (04) 297-305
  • 46 Notohamiprodjo M, Horng A, Pietschmann MF. , et al. MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 2009; 44 (09) 585-597
  • 47 Altahawi FF, Blount KJ, Morley NP, Raithel E, Omar IM. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences. Skeletal Radiol 2017; 46 (01) 7-15
  • 48 Filli L, Piccirelli M, Kenkel D. , et al. Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle. Invest Radiol 2015; 50 (07) 456-463
  • 49 Filli L, Boss A, Wurnig MC, Kenkel D, Andreisek G, Guggenberger R. Dynamic intravoxel incoherent motion imaging of skeletal muscle at rest and after exercise. NMR Biomed 2015; 28 (02) 240-246
  • 50 Fieremans E, Lemberskiy G, Veraart J, Sigmund EE, Gyftopoulos S, Novikov DS. In vivo measurement of membrane permeability and myofiber size in human muscle using time-dependent diffusion tensor imaging and the random permeable barrier model. NMR Biomed 2017;30(03)
  • 51 Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging 2016; 43 (04) 773-788
  • 52 Scheel M, von Roth P, Winkler T. , et al. Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed 2013; 26 (10) 1220-1224
  • 53 Longwei X. Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle. Muscles Ligaments Tendons J 2012; 2 (01) 19-24
  • 54 Marcon M, Ciritsis B, Laux C. , et al. Quantitative and qualitative MR-imaging assessment of vastus medialis muscle volume loss in asymptomatic patients after anterior cruciate ligament reconstruction. J Magn Reson Imaging 2015; 42 (02) 515-525
  • 55 Fischer MA, Nanz D, Shimakawa A. , et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology 2013; 266 (02) 555-563
  • 56 Del Grande F, Subhawong T, Weber K, Aro M, Mugera C, Fayad LM. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology 2014; 271 (02) 499-511
  • 57 Biswal S, Behera D, Yoon DH. , et al. [18F]FDG PET/MRI of patients with chronic pain alters management: early experience. EJNMMI Phys 2015; 2 (Suppl. 01) A84
  • 58 Park JM, Josan S, Mayer D. , et al. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. J Exp Biol 2015; 218 (Pt 20): 3308-3318