Facial Plast Surg 2017; 33(04): 372-377
DOI: 10.1055/s-0037-1603788
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Determinants and Evaluation of Nasal Airflow Perception

Jasper Shen
1   Department of Otolaryngology-Head and Neck Surgery, Keck Hospital of USC, Los Angeles, California
,
Kevin Hur
1   Department of Otolaryngology-Head and Neck Surgery, Keck Hospital of USC, Los Angeles, California
,
Kai Zhao
2   Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio
,
Donald A. Leopold
3   ENT Division, Department of Surgery, University of Vermont, Burlington, Vermont
,
Bozena B. Wrobel
1   Department of Otolaryngology-Head and Neck Surgery, Keck Hospital of USC, Los Angeles, California
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
28. Juli 2017 (online)

Abstract

The sensation of nasal airflow, or nasal airway patency, is an important consideration in the treatment outcome of nasal airway obstruction. Clinicians striving to optimize the nasal passageway have relied on techniques aimed at decreasing peak airway resistance across nasal valves. Nonetheless, the evaluation of the nasal airway is multifaceted, and the objective determinants of subjective nasal patency remain incompletely elucidated. While rhinomanometry, peak nasal inspiratory airflow, and acoustic rhinometry have traditionally been used in research to focus on resistance as a measure of patency, an emerging body of evidence suggests that subjective nasal patency is more significantly correlated to the dynamic change of nasal mucosal temperature. The objective of this review is to provide the technical background on nasal airflow perception and intranasal trigeminal function as crucial to those performing functional and aesthetic rhinosurgery.

 
  • References

  • 1 Stewart M, Ferguson B, Fromer L. Epidemiology and burden of nasal congestion. Int J Gen Med 2010; 3: 37-45
  • 2 Bhattacharyya N. Ambulatory sinus and nasal surgery in the United States: demographics and perioperative outcomes. Laryngoscope 2010; 120 (03) 635-638
  • 3 Lee MK, Most SP. Evidence-based medicine: rhinoplasty. Facial Plast Surg Clin North Am 2015; 23 (03) 303-312
  • 4 Dommerby H, Rasmussen OR, Rosborg J. Long-term results of septoplastic operations. ORL J Otorhinolaryngol Relat Spec 1985; 47 (03) 151-157
  • 5 Dinis PB, Haider H. Septoplasty: long-term evaluation of results. Am J Otolaryngol 2002; 23 (02) 85-90
  • 6 Singh A, Patel N, Kenyon G, Donaldson G. Is there objective evidence that septal surgery improves nasal airflow?. J Laryngol Otol 2006; 120 (11) 916-920
  • 7 Moore M, Eccles R. Objective evidence for the efficacy of surgical management of the deviated septum as a treatment for chronic nasal obstruction: a systematic review. Clin Otolaryngol 2011; 36 (02) 106-113
  • 8 André RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenité GJ. Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 2009; 34 (06) 518-525
  • 9 Lam DJ, James KT, Weaver EM. Comparison of anatomic, physiological, and subjective measures of the nasal airway. Am J Rhinol 2006; 20 (05) 463-470
  • 10 Rhee JS, Weaver EM, Park SS. , et al. Clinical consensus statement: diagnosis and management of nasal valve compromise. Otolaryngol Head Neck Surg 2010; 143 (01) 48-59
  • 11 Patel RG. Nasal anatomy and function. Facial Plast Surg 2017; 33 (01) 3-8
  • 12 Wexler DB, Davidson TM. The nasal valve: a review of the anatomy, imaging, and physiology. Am J Rhinol 2004; 18 (03) 143-150
  • 13 Keeler J, Most SP. Measuring nasal obstruction. Facial Plast Surg Clin North Am 2016; 24 (03) 315-322
  • 14 Rusu MC, Pop F. The anatomy of the sympathetic pathway through the pterygopalatine fossa in humans. Ann Anat 2010; 192 (01) 17-22
  • 15 Sommer F, Kroger R, Lindemann J. Numerical simulation of humidification and heating during inspiration within an adult nose. Rhinology 2012; 50 (02) 157-164
  • 16 Zhao K, Frye RE. Nasal patency and the aerodynamics of nasal airflow in relation to olfactory function. In: Handbook of Olfaction and Gustation: New York, NY: John Wiley & Sons; 2015: 353-374
  • 17 Clarke RW, Jones AS. The limitations of peak nasal flow measurement. Clin Otolaryngol Allied Sci 1994; 19 (06) 502-504
  • 18 Lund VJ. Objective assessment of nasal obstruction. Otolaryngol Clin North Am 1989; 22 (02) 279-290
  • 19 Proimos EK, Kiagiadaki DE, Chimona TS, Seferlis FG, Maroudias NJ, Papadakis CE. Comparison of acoustic rhinometry and nasal inspiratory peak flow as objective tools for nasal obstruction assessment in patients with chronic rhinosinusitis. Rhinology 2015; 53 (01) 66-74
  • 20 Zhao K, Dalton P. The way the wind blows: implications of modeling nasal airflow. Curr Allergy Asthma Rep 2007; 7 (02) 117-125
  • 21 Stewart MG, Witsell DL, Smith TL, Weaver EM, Yueh B, Hannley MT. Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol Head Neck Surg 2004; 130 (02) 157-163
  • 22 Wysocki CJ, Cowart BJ, Radil T. Nasal trigeminal chemosensitivity across the adult life span. Percept Psychophys 2003; 65 (01) 115-122
  • 23 Wysocki CJ, Dalton P, Brody MJ, Lawley HJ. Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally unexposed) subjects. Am Ind Hyg Assoc J 1997; 58 (10) 704-712
  • 24 Li C, Farag AA, Leach J. , et al. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. Laryngoscope 2017; (e-pub ahead of print) DOI: 10.1002/lary.26530.
  • 25 Zhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 2011; 6 (10) e24618
  • 26 Meusel T, Negoias S, Scheibe M, Hummel T. Topographical differences in distribution and responsiveness of trigeminal sensitivity within the human nasal mucosa. Pain 2010; 151 (02) 516-521
  • 27 Enrique Cometto-Muñiz J, Simons C. Trigeminal chemesthesis. In: Handbook of Olfaction and Gustation. New York, NY: John Wiley & Sons; 2015: 1089-1112
  • 28 Cauna N, Hinderer KH, Wentges RT. Sensory receptor organs of the human nasal respiratory mucosa. Am J Anat 1969; 124 (02) 187-209
  • 29 Jones AS, Wight RG, Crosher R, Durham LH. Nasal sensation of airflow following blockade of the nasal trigeminal afferents. Clin Otolaryngol Allied Sci 1989; 14 (04) 285-289
  • 30 Clarke RW, Jones AS. The distribution of nasal airflow sensitivity in normal subjects. J Laryngol Otol 1994; 108 (12) 1045-1047
  • 31 Frasnelli J, Heilmann S, Hummel T. Responsiveness of human nasal mucosa to trigeminal stimuli depends on the site of stimulation. Neurosci Lett 2004; 362 (01) 65-69
  • 32 Wrobel BB, Bien AG, Holbrook EH. , et al. Decreased nasal mucosal sensitivity in older subjects. Am J Rhinol 2006; 20 (03) 364-368
  • 33 Frasnelli J, Hummel T. Age-related decline of intranasal trigeminal sensitivity: is it a peripheral event?. Brain Res 2003; 987 (02) 201-206
  • 34 Jones AS, Wight RG, Durham LH. The distribution of thermoreceptors within the nasal cavity. Clin Otolaryngol Allied Sci 1989; 14 (03) 235-239
  • 35 Burrow A, Eccles R, Jones AS. The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Otolaryngol 1983; 96 (1-2): 157-161
  • 36 Eccles R, Jones AS. The effect of menthol on nasal resistance to air flow. J Laryngol Otol 1983; 97 (08) 705-709
  • 37 Willatt DJ, Jones AS. The role of the temperature of the nasal lining in the sensation of nasal patency. Clin Otolaryngol Allied Sci 1996; 21 (06) 519-523
  • 38 Voets T, Owsianik G, Nilius B. Trpm8. Handb Exp Pharmacol 2007; (179) 329-344
  • 39 Bautista DM, Siemens J, Glazer JM. , et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007; 448 (7150): 204-208
  • 40 Lindemann J, Keck T, Scheithauer MO, Leiacker R, Wiesmiller K. Nasal mucosal temperature in relation to nasal airflow as measured by rhinomanometry. Am J Rhinol 2007; 21 (01) 46-49
  • 41 Bailey RS, Casey KP, Pawar SS, Garcia GJ. Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast Surg 2017; 19 (01) 46-52
  • 42 Zhao K, Jiang J, Blacker K. , et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
  • 43 Sullivan CD, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol Head Neck Surg 2014; 150 (01) 139-147
  • 44 Konstantinidis I, Tsakiropoulou E, Chatziavramidis A, Ikonomidis C, Markou K. Intranasal trigeminal function in patients with empty nose syndrome. Laryngoscope 2017; (e-pub ahead of print) DOI: 10.1002/lary.26491.
  • 45 Dagli E, Yüksel A, Kaya M, Ugur KS, Turkay FC. Association of oral antireflux medication with laryngopharyngeal reflux and nasal resistance. JAMA Otolaryngol Head Neck Surg 2017
  • 46 Rhee JS, Pawar SS, Garcia GJ, Kimbell JS. Toward personalized nasal surgery using computational fluid dynamics. Arch Facial Plast Surg 2011; 13 (05) 305-310
  • 47 Zhao K, Malhotra P, Rosen D, Dalton P, Pribitkin EA. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection. Anat Rec (Hoboken) 2014; 297 (11) 2187-2195