J Pediatr Infect Dis 2017; 12(03): 164-170
DOI: 10.1055/s-0037-1603657
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Neonatal Immune Responses during Group B Streptococcal Infections

Kirtikumar Upadhyay
1   Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
,
Ajay J. Talati
1   Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
› Author Affiliations
Further Information

Publication History

17 June 2016

13 August 2016

Publication Date:
07 June 2017 (online)

Abstract

Group B streptococcus (GBS) still remains an important cause of neonatal sepsis in spite of various preventive strategies. The immune response of a neonate varies from an adult human immune system and makes a newborn more vulnerable to illness not typically manifested by adults. Microbial virulence, bacterial load, and immaturity of immune response system may explain the variation in severity of illness in term and preterm neonates. In this review, the mechanisms of GBS invasion and infection in a neonate are described. We also try to identify the host immune response to various bacterial components of GBS and possible future strategies to mitigate this immune response to improve neonatal outcomes after GBS sepsis.

 
  • References

  • 1 Regan JA, Klebanoff MA, Nugent RP. ; Vaginal Infections and Prematurity Study Group. The epidemiology of group B streptococcal colonization in pregnancy. Obstet Gynecol 1991; 77 (04) 604-610
  • 2 Campbell JR, Hillier SL, Krohn MA, Ferrieri P, Zaleznik DF, Baker CJ. Group B streptococcal colonization and serotype-specific immunity in pregnant women at delivery. Obstet Gynecol 2000; 96 (04) 498-503
  • 3 Edwards MS, Rench MA, Palazzi DL, Baker CJ. Group B streptococcal colonization and serotype-specific immunity in healthy elderly persons. Clin Infect Dis 2005; 40 (03) 352-357
  • 4 Lancefield RC, Hare R. The serological differentiation of pathogenic and non-pathogenic strains of hemolytici streptococci from parturient women. J Exp Med 1935; 61: 335-349
  • 5 Eickhoff TC, Klein JO, Daly AK, Ingall D, Finland M. Neonatal sepsis and other infections due to group B beta-hemolytic streptococci. N Engl J Med 1964; 271: 1221-1228
  • 6 Jordan HT, Farley MM, Craig A. , et al; Active Bacterial Core Surveillance (ABCs)/Emerging Infections Program Network, CDC. Revisiting the need for vaccine prevention of late-onset neonatal group B streptococcal disease: a multistate, population-based analysis. Pediatr Infect Dis J 2008; 27 (12) 1057-1064
  • 7 Stoll BJ, Hansen NI, Sánchez PJ. , et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics 2011; 127 (05) 817-826
  • 8 CDC. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Group B Streptococcus, 2008. Atlanta, GA: US Department of Health and Human Services, CDC; 2009 . Available at: http://www.cdc.gov/abcs/reports-findings/survreports/gbs08.html . Accessed on May 24, 2017
  • 9 Phares CR, Lynfield R, Farley MM. , et al; Active Bacterial Core surveillance/Emerging Infections Program Network. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA 2008; 299 (17) 2056-2065
  • 10 Edwards MS, Baker CJ. Group B streptococcal infections in elderly adults. Clin Infect Dis 2005; 41 (06) 839-847
  • 11 Huang PY, Lee MH, Yang CC, Leu HS. Group B streptococcal bacteremia in non-pregnant adults. J Microbiol Immunol Infect 2006; 39 (03) 237-241
  • 12 Edwards MS, Baker CJ. Group B streptococcal infections. In: Remington JS, Klein JO. , eds. Infectious Diseases of the Fetus and Newborn Infant, 5th ed. Philadelphia: W.B. Saunders; 2001: 1091-1156
  • 13 Turrentine MA, Ramirez MM. Recurrence of group B streptococci colonization in subsequent pregnancy. Obstet Gynecol 2008; 112 (2 Pt 1): 259-264
  • 14 Dechen TC, Sumit K, Ranabir P. Correlates of vaginal colonization with group B streptococci among pregnant women. J Glob Infect Dis 2010; 2 (03) 236-241
  • 15 Hansen SM, Uldbjerg N, Kilian M, Sørensen UB. Dynamics of Streptococcus agalactiae colonization in women during and after pregnancy and in their infants. J Clin Microbiol 2004; 42 (01) 83-89
  • 16 Boyer KM, Gotoff SP. Strategies for chemoprophylaxis of GBS early-onset infections. Antibiot Chemother (1971) 1985; 35: 267-280
  • 17 Boyer KM, Gotoff SP. Prevention of early-onset neonatal group B streptococcal disease with selective intrapartum chemoprophylaxis. N Engl J Med 1986; 314 (26) 1665-1669
  • 18 American Academy of Pediatrics Committee on Infectious Diseases and Committee on Fetus and Newborn. Revised guidelines for prevention of early-onset group B streptococcal (GBS) infection. Pediatrics 1997; 99 (03) 489-496
  • 19 Verani JR, McGee L, Schrag SJ. ; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease--revised guidelines from CDC, 2010. MMWR Recomm Rep 2010; 59 (RR-10): 1-36
  • 20 Karlström A, Boyd KL, English BK, McCullers JA. Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J Infect Dis 2009; 199 (03) 311-319
  • 21 Mufson MA, Stanek RJ. Bacteremic pneumococcal pneumonia in one American City: a 20-year longitudinal study, 1978-1997. Am J Med 1999; 107 (1A): 34S-43S
  • 22 Klein JO. Bacterial sepsis and meningitis. In: Remington JS, Klein JO. , eds. Infectious Disease of the Fetus and Newborn Infant, 5th ed. Philadelphia: W.B. Saunders; 2001: 943-998
  • 23 Schrag SJ, Zywicki S, Farley MM. , et al. Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. N Engl J Med 2000; 342 (01) 15-20
  • 24 Rubens CE, Raff HV, Jackson JC, Chi EY, Bielitzki JT, Hillier SL. Pathophysiology and histopathology of group B streptococcal sepsis in Macaca nemestrina primates induced after intraamniotic inoculation: evidence for bacterial cellular invasion. J Infect Dis 1991; 164 (02) 320-330
  • 25 Doran KS, Nizet V. Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol 2004; 54 (01) 23-31
  • 26 Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 2007; 7 (05) 379-390
  • 27 Bauer K, Zemlin M, Hummel M. , et al. Diversification of Ig heavy chain genes in human preterm neonates prematurely exposed to environmental antigens. J Immunol 2002; 169 (03) 1349-1356
  • 28 Baker CJ, Kasper DL. Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N Engl J Med 1976; 294 (14) 753-756
  • 29 Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004; 4 (07) 553-564
  • 30 Krishnan S, Craven M, Welliver RC, Ahmad N, Halonen M. Differences in participation of innate and adaptive immunity to respiratory syncytial virus in adults and neonates. J Infect Dis 2003; 188 (03) 433-439
  • 31 Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197-216
  • 32 Maródi L. Innate cellular immune responses in newborns. Clin Immunol 2006; 118 (2-3): 137-144
  • 33 Adkins B. Heterogeneity in the CD4 T cell compartment and the variability of neonatal immune responsiveness. Curr Immunol Rev 2007; 3 (03) 151-159
  • 34 Janeway Jr CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54 (Pt 1): 1-13
  • 35 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124 (04) 783-801
  • 36 Bowie A, O'Neill LA. The interleukin-1 receptor/toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000; 67 (04) 508-514
  • 37 Hayashi F, Smith KD, Ozinsky A. , et al. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature 2001; 410 (6832): 1099-1103
  • 38 Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22 (02) 240-273
  • 39 Mancuso G, Midiri A, Beninati C. , et al. Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol 2004; 172 (10) 6324-6329
  • 40 Henneke P, Takeuchi O, van Strijp JA. , et al. Novel engagement of CD14 and multiple toll-like receptors by group B streptococci. J Immunol 2001; 167 (12) 7069-7076
  • 41 Kenzel S, Mancuso G, Malley R, Teti G, Golenbock DT, Henneke P. c-Jun kinase is a critical signaling molecule in a neonatal model of group B streptococcal sepsis. J Immunol 2006; 176 (05) 3181-3188
  • 42 Krueger M, Nauck MS, Sang S, Hentschel R, Wieland H, Berner R. Cord blood levels of interleukin-6 and interleukin-8 for the immediate diagnosis of early-onset infection in premature infants. Biol Neonate 2001; 80 (02) 118-123
  • 43 Berner R, Csorba J, Brandis M. Different cytokine expression in cord blood mononuclear cells after stimulation with neonatal sepsis or colonizing strains of Streptococcus agalactiae . Pediatr Res 2001; 49 (05) 691-697
  • 44 Chelvarajan RL, Collins SM, Doubinskaia IE. , et al. Defective macrophage function in neonates and its impact on unresponsiveness of neonates to polysaccharide antigens. J Leukoc Biol 2004; 75 (06) 982-994
  • 45 Williams PA, Bohnsack JF, Augustine NH, Drummond WK, Rubens CE, Hill HR. Production of tumor necrosis factor by human cells in vitro and in vivo, induced by group B streptococci. J Pediatr 1993; 123 (02) 292-300
  • 46 Peters AM, Bertram P, Gahr M, Speer CP. Reduced secretion of interleukin-1 and tumor necrosis factor-alpha by neonatal monocytes. Biol Neonate 1993; 63 (03) 157-162
  • 47 Vallejo JG, Baker CJ, Edwards MS. Roles of the bacterial cell wall and capsule in induction of tumor necrosis factor alpha by type III group B streptococci. Infect Immun 1996; 64 (12) 5042-5046
  • 48 Martin TR, Ruzinski JT, Rubens CE, Chi EY, Wilson CB. The effect of type-specific polysaccharide capsule on the clearance of group B streptococci from the lungs of infant and adult rats. J Infect Dis 1992; 165 (02) 306-314
  • 49 Rubens CE, Wessels MR, Heggen LM, Kasper DL. Transposon mutagenesis of type III group B streptococcus: correlation of capsule expression with virulence. Proc Natl Acad Sci U S A 1987; 84 (20) 7208-7212
  • 50 Doran KS, Liu GY, Nizet V. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 2003; 112 (05) 736-744
  • 51 Henneke P, Morath S, Uematsu S. , et al. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 2005; 174 (10) 6449-6455
  • 52 Han SH, Kim JH, Martin M, Michalek SM, Nahm MH. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating toll-like receptor 2. Infect Immun 2003; 71 (10) 5541-5548
  • 53 Gravekamp C, Kasper DL, Michel JL, Kling DE, Carey V, Madoff LC. Immunogenicity and protective efficacy of the alpha C protein of group B streptococci are inversely related to the number of repeats. Infect Immun 1997; 65 (12) 5216-5221
  • 54 Harris TO, Shelver DW, Bohnsack JF, Rubens CE. A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J Clin Invest 2003; 111 (01) 61-70
  • 55 Beckmann C, Waggoner JD, Harris TO, Tamura GS, Rubens CE. Identification of novel adhesins from group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun 2002; 70 (06) 2869-2876
  • 56 Talati AJ, Kim HJ, Kim YI, Yi AK, English BK. Role of bacterial DNA in macrophage activation by group B streptococci. Microbes Infect 2008; 10 (10-11): 1106-1113
  • 57 Aderem A. Phagocytosis and the inflammatory response. J Infect Dis 2003; 187 (Suppl. 02) S340-S345
  • 58 Carr R, Huizinga TW. Low soluble FcRIII receptor demonstrates reduced neutrophil reserves in preterm neonates. Arch Dis Child Fetal Neonatal Ed 2000; 83 (02) F160
  • 59 Anderson DC, Abbassi O, Kishimoto TK, Koenig JM, McIntire LV, Smith CW. Diminished lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 on neonatal neutrophils underlies their impaired CD18-independent adhesion to endothelial cells in vitro. J Immunol 1991; 146 (10) 3372-3379
  • 60 Mariscalco MM, Tcharmtchi MH, Smith CW. P-Selectin support of neonatal neutrophil adherence under flow: contribution of L-selectin, LFA-1, and ligand(s) for P-selectin. Blood 1998; 91 (12) 4776-4785
  • 61 Anderson DC, Hughes BJ, Smith CW. Abnormal mobility of neonatal polymorphonuclear leukocytes. Relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine. J Clin Invest 1981; 68 (04) 863-874
  • 62 Rowen JL, Smith CW, Edwards MS. Group B streptococci elicit leukotriene B4 and interleukin-8 from human monocytes: neonates exhibit a diminished response. J Infect Dis 1995; 172 (02) 420-426
  • 63 Takahashi S, Nagano Y, Nagano N, Hayashi O, Taguchi F, Okuwaki Y. Role of C5a-ase in group B streptococcal resistance to opsonophagocytic killing. Infect Immun 1995; 63 (12) 4764-4769
  • 64 Henneke P, Takeuchi O, Malley R. , et al. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol 2002; 169 (07) 3970-3977
  • 65 McEvoy LT, Zakem-Cloud H, Tosi MF. Total cell content of CR3 (CD11b/CD18) and LFA-1 (CD11a/CD18) in neonatal neutrophils: relationship to gestational age. Blood 1996; 87 (09) 3929-3933
  • 66 Bowdy BD, Marple SL, Pauly TH, Coonrod JD, Gillespie MN. Oxygen radical-dependent bacterial killing and pulmonary hypertension in piglets infected with group B streptococci. Am Rev Respir Dis 1990; 141 (03) 648-653
  • 67 Poyart C, Pellegrini E, Gaillot O, Boumaila C, Baptista M, Trieu-Cuot P. Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae . Infect Immun 2001; 69 (08) 5098-5106
  • 68 Källman J, Schollin J, Schalèn C, Erlandsson A, Kihlström E. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed 1998; 78 (01) F46-F50
  • 69 Gahr M, Schulze M, Scheffczyk D, Speer CP, Peters JH. Diminished release of lactoferrin from polymorphonuclear leukocytes of human neonates. Acta Haematol 1987; 77 (02) 90-94
  • 70 Maródi L, Leijh PC, van Furth R. Characteristics and functional capacities of human cord blood granulocytes and monocytes. Pediatr Res 1984; 18 (11) 1127-1131
  • 71 Teti G, Mancuso G, Tomasello F. Cytokine appearance and effects of anti-tumor necrosis factor alpha antibodies in a neonatal rat model of group B streptococcal infection. Infect Immun 1993; 61 (01) 227-235
  • 72 Villamor E, Pérez Vizcaíno F, Tamargo J, Moro M. Effects of group B Streptococcus on the responses to U46619, endothelin-1, and noradrenaline in isolated pulmonary and mesenteric arteries of piglets. Pediatr Res 1996; 40 (06) 827-833
  • 73 Austrian R, Gold J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 1964; 60: 759-776
  • 74 Mandell LA, Wunderink RG, Anzueto A. , et al; Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 (Suppl. 02) S27-S72
  • 75 Marriott HM, Mitchell TJ, Dockrell DH. Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 2008; 8 (06) 497-509
  • 76 Waterer GW, Somes GW, Wunderink RG. Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Intern Med 2001; 161 (15) 1837-1842
  • 77 Brinkmann KC, Talati AJ, Akbari RE, Meals EA, English BK. Group B streptococci exposed to rifampin or clindamycin (versus ampicillin or cefotaxime) stimulate reduced production of inflammatory mediators by murine macrophages. Pediatr Res 2005; 57 (03) 419-423
  • 78 Upadhyay K, Meals E, English BK, Talati AJ. Combination of ampicillin and azithromycin improved outcomes in mouse model of group B streptococcus sepsis. J Investig Med 2013; 61 (02) 468-468