Semin Reprod Med 2017; 35(03): 231-240
DOI: 10.1055/s-0037-1603571
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Ovary as a Biomarker of Health and Longevity: Insights from Genetics

Aleksandar Rajkovic
1   Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
2   Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
3   Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
5   Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
,
Stephanie Pangas
5   Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
6   Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
28 June 2017 (online)

Abstract

Reproductive fitness and its influence on overall health has been a topic of significant study and interest. Multiple studies have found that age at last reproduction associates with overall health. Women who conceive later in life are significantly more likely to outlive their peers who are unable to conceive. The mechanisms behind these observations are not well understood. Earlier age at menopause associates with shorter life span, increased risk for diabetes mellitus, and increased risk of heart disease, and represents a surrogate marker for the age at last reproduction. Recent applications of genome-wide association studies as well as whole-exome sequencing to familial primary ovarian insufficiency (POI) and menopause have identified new genomic regions that link reproductive aging and adverse health outcomes. The preponderance of DNA damage response genes in menopause and POI represents a relatively new paradigm in this area, and links overall aging and reproduction at the molecular level. Identification of the subset of individuals who are at risk for adverse health outcomes remains a significant and high priority research challenge. The combination of epidemiologic studies in women with diminished ovarian reserves, ovarian insufficiency, and early menopause, as well as appropriate animal studies, will be necessary to dissect genotype–phenotype correlations not only in the cause of ovarian dysfunction but also in the cause of adverse health outcomes.

 
  • References

  • 1 Jagarlamudi K, Rajkovic A. Oogenesis: transcriptional regulators and mouse models. Mol Cell Endocrinol 2012; 356 (1-2): 31-39
  • 2 Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman's reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 1998; 83 (06) 1875-1880
  • 3 van Asselt KM, Kok HS, Pearson PL. , et al. Heritability of menopausal age in mothers and daughters. Fertil Steril 2004; 82 (05) 1348-1351
  • 4 Kok HS, van Asselt KM, van der Schouw YT, Peeters PH, Wijmenga C. Genetic studies to identify genes underlying menopausal age. Hum Reprod Update 2005; 11 (05) 483-493
  • 5 Dribe M. Long-term effects of childbearing on mortality: evidence from pre-industrial Sweden. Popul Stud (Camb) 2004; 58 (03) 297-310
  • 6 Gagnon A, Smith KR, Tremblay M, Vézina H, Paré PP, Desjardins B. Is there a trade-off between fertility and longevity? A comparative study of women from three large historical databases accounting for mortality selection. Am J Hum Biol 2009; 21 (04) 533-540
  • 7 Smith KR, Mineau GP, Bean LL. Fertility and post-reproductive longevity. Soc Biol 2002; 49 (3-4): 185-205
  • 8 Jaffe D, Kogan L, Manor O, Gielchinsky Y, Dior U, Laufer N. Influence of late-age births on maternal longevity. Ann Epidemiol 2015; 25 (06) 387-391
  • 9 Laufer N, Simon A, Samueloff A, Yaffe H, Milwidsky A, Gielchinsky Y. Successful spontaneous pregnancies in women older than 45 years. Fertil Steril 2004; 81 (05) 1328-1332
  • 10 Gielchinsky Y, Bogoch Y, Rechavi G. , et al. Gene expression in women conceiving spontaneously over the age of 45 years. Fertil Steril 2008; 89 (06) 1641-1650
  • 11 Perls TT, Alpert L, Fretts RC. Middle-aged mothers live longer. Nature 1997; 389 (6647): 133
  • 12 Gagnon A, Beise J, Vaupel JW. Genome-wide identity-by-descent sharing among CEPH siblings. Genet Epidemiol 2005; 29 (03) 215-224
  • 13 Smith KR, Gagnon A, Cawthon RM, Mineau GP, Mazan R, Desjardins B. Familial aggregation of survival and late female reproduction. J Gerontol A Biol Sci Med Sci 2009; 64 (07) 740-744
  • 14 Snowdon DA, Kane RL, Beeson WL. , et al. Is early natural menopause a biologic marker of health and aging?. Am J Public Health 1989; 79 (06) 709-714
  • 15 Jacobsen BK, Heuch I, Kvåle G. Age at natural menopause and all-cause mortality: a 37-year follow-up of 19,731 Norwegian women. Am J Epidemiol 2003; 157 (10) 923-929
  • 16 Cooper GS, Sandler DP. Age at natural menopause and mortality. Ann Epidemiol 1998; 8 (04) 229-235
  • 17 Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas 2010; 65 (02) 161-166
  • 18 Maclaran K, Horner E, Panay N. Premature ovarian failure: long-term sequelae. Menopause Int 2010; 16 (01) 38-41
  • 19 Ossewaarde ME, Bots ML, Verbeek AL. , et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology 2005; 16 (04) 556-562
  • 20 Melby MK, Lock M, Kaufert P. Culture and symptom reporting at menopause. Hum Reprod Update 2005; 11 (05) 495-512
  • 21 Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med 2009; 360 (06) 606-614
  • 22 Bidet M, Bachelot A, Bissauge E. , et al. Resumption of ovarian function and pregnancies in 358 patients with premature ovarian failure. J Clin Endocrinol Metab 2011; 96 (12) 3864-3872
  • 23 Sassarini J, Lumsden MA, Critchley HO. Sex hormone replacement in ovarian failure - new treatment concepts. Best Pract Res Clin Endocrinol Metab 2015; 29 (01) 105-114
  • 24 Perez GI, Jurisicova A, Wise L. , et al. Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice. Proc Natl Acad Sci U S A 2007; 104 (12) 5229-5234
  • 25 Richards M, Kuh D, Hardy R, Wadsworth M. Lifetime cognitive function and timing of the natural menopause. Neurology 1999; 53 (02) 308-314
  • 26 Murabito JM, Yang Q, Fox C, Wilson PW, Cupples LA. Heritability of age at natural menopause in the Framingham Heart Study. J Clin Endocrinol Metab 2005; 90 (06) 3427-3430
  • 27 He C, Kraft P, Chen C. , et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet 2009; 41 (06) 724-728
  • 28 He C, Kraft P, Chasman DI. , et al. A large-scale candidate gene association study of age at menarche and age at natural menopause. Hum Genet 2010; 128 (05) 515-527
  • 29 Stolk L, Zhai G, van Meurs JB. , et al. Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat Genet 2009; 41 (06) 645-647
  • 30 Spencer KL, Malinowski J, Carty CL. , et al. Genetic variation and reproductive timing: African American women from the Population Architecture using Genomics and Epidemiology (PAGE) Study. PLoS One 2013; 8 (02) e55258
  • 31 Day FR, Ruth KS, Thompson DJ. , et al; PRACTICAL Consortium; kConFab Investigators; AOCS Investigators; Generation Scotland; EPIC-InterAct Consortium; LifeLines Cohort Study. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet 2015; 47 (11) 1294-1303
  • 32 Chen CT, Fernández-Rhodes L, Brzyski RG. , et al. Replication of loci influencing ages at menarche and menopause in Hispanic women: the Women's Health Initiative SHARe Study. Hum Mol Genet 2012; 21 (06) 1419-1432
  • 33 Lutzmann M, Grey C, Traver S. , et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell 2012; 47 (04) 523-534
  • 34 Murray A, Bennett CE, Perry JR. , et al; ReproGen Consortium. Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study. Hum Mol Genet 2011; 20 (01) 186-192
  • 35 Stolk L, Perry JR, Chasman DI. , et al; LifeLines Cohort Study. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet 2012; 44 (03) 260-268
  • 36 Adelman CA, Lolo RL, Birkbak NJ. , et al. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature 2013; 502 (7471): 381-384
  • 37 Wei K, Clark AB, Wong E. , et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 2003; 17 (05) 603-614
  • 38 de Vries L, Behar DM, Smirin-Yosef P, Lagovsky I, Tzur S, Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab 2014; 99 (10) E2129-E2132
  • 39 Caburet S, Arboleda VA, Llano E. , et al. Mutant cohesin in premature ovarian failure. N Engl J Med 2014; 370 (10) 943-949
  • 40 Wang J, Zhang W, Jiang H, Wu BL. ; Primary Ovarian Insufficiency Collaboration. Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med 2014; 370 (10) 972-974
  • 41 AlAsiri S, Basit S, Wood-Trageser MA. , et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest 2015; 125 (01) 258-262
  • 42 Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P. , et al. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet 2015; 52 (06) 391-399
  • 43 Wood-Trageser MA, Gurbuz F, Yatsenko SA. , et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet 2014; 95 (06) 754-762
  • 44 Coppieters F, Ascari G, Dannhausen K. , et al. Isolated and syndromic retinal dystrophy caused by biallelic mutations in RCBTB1, a gene implicated in ubiquitination. Am J Hum Genet 2016; 99 (02) 470-480
  • 45 Faridi R, Rehman AU, Morell RJ. , et al. Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Clin Genet 2017; 91 (02) 328-332
  • 46 Zangen D, Kaufman Y, Zeligson S. , et al. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription. Am J Hum Genet 2011; 89 (04) 572-579
  • 47 Bayram Y, Gulsuner S, Guran T. , et al. Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism. J Clin Endocrinol Metab 2015; 100 (05) E808-E814
  • 48 Weinberg-Shukron A, Renbaum P, Kalifa R. , et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J Clin Invest 2015; 125 (11) 4295-4304
  • 49 Savitsky K, Bar-Shira A, Gilad S. , et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268 (5218): 1749-1753
  • 50 Chrzanowska KH, Szarras-Czapnik M, Gajdulewicz M. , et al. High prevalence of primary ovarian insufficiency in girls and young women with Nijmegen breakage syndrome: evidence from a longitudinal study. J Clin Endocrinol Metab 2010; 95 (07) 3133-3140
  • 51 Arora H, Chacon AH, Choudhary S. , et al. Bloom syndrome. Int J Dermatol 2014; 53 (07) 798-802
  • 52 Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010; 9 (03) 331-344
  • 53 Siitonen HA, Sotkasiira J, Biervliet M. , et al. The mutation spectrum in RECQL4 diseases. Eur J Hum Genet 2009; 17 (02) 151-158
  • 54 Giri N, Batista DL, Alter BP, Stratakis CA. Endocrine abnormalities in patients with Fanconi anemia. J Clin Endocrinol Metab 2007; 92 (07) 2624-2631
  • 55 Simpson JL, Rajkovic A. Ovarian differentiation and gonadal failure. Am J Med Genet 1999; 89 (04) 186-200
  • 56 Hartford SA, Luo Y, Southard TL, Min IM, Lis JT, Schimenti JC. Minichromosome maintenance helicase paralog MCM9 is dispensible for DNA replication but functions in germ-line stem cells and tumor suppression. Proc Natl Acad Sci U S A 2011; 108 (43) 17702-17707
  • 57 Fauchereau F, Shalev S, Chervinsky E. , et al. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency. Clin Genet 2016; 89 (05) 603-607
  • 58 Chen CT, Liu CT, Chen GK. , et al. Meta-analysis of loci associated with age at natural menopause in African-American women. Hum Mol Genet 2014; 23 (12) 3327-3342
  • 59 Goldberg Y, Halpern N, Hubert A. , et al. Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure. Cancer Genet 2015; 208 (12) 621-624
  • 60 Desai S, Wood-Trageser M, Matic J. , et al. MCM8 and MCM9 nucleotide variants in women with primary ovarian insufficiency. J Clin Endocrinol Metab 2017; 102 (02) 576-582
  • 61 Kannel WB. Metabolic risk factors for coronary heart disease in women: perspective from the Framingham Study. Am Heart J 1987; 114 (02) 413-419
  • 62 Løkkegaard E, Jovanovic Z, Heitmann BL, Keiding N, Ottesen B, Pedersen AT. The association between early menopause and risk of ischaemic heart disease: influence of Hormone Therapy. Maturitas 2006; 53 (02) 226-233
  • 63 Parker WH, Jacoby V, Shoupe D, Rocca W. Effect of bilateral oophorectomy on women's long-term health. Womens Health (Lond) 2009; 5 (05) 565-576
  • 64 Cedars MI. Biomarkers of ovarian reserve--do they predict somatic aging?. Semin Reprod Med 2013; 31 (06) 443-451
  • 65 Levine ME, Lu AT, Chen BH. , et al. Menopause accelerates biological aging. Proc Natl Acad Sci U S A 2016; 113 (33) 9327-9332
  • 66 Schoemaker MJ, Swerdlow AJ, Higgins CD, Wright AF, Jacobs PA. ; United Kingdom Clinical Cytogenetics Group. Mortality in women with turner syndrome in Great Britain: a national cohort study. J Clin Endocrinol Metab 2008; 93 (12) 4735-4742
  • 67 Kok HS, van Asselt KM, van der Schouw YT. , et al. Heart disease risk determines menopausal age rather than the reverse. J Am Coll Cardiol 2006; 47 (10) 1976-1983
  • 68 Manson JE, Hsia J, Johnson KC. , et al; Women's Health Initiative Investigators. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003; 349 (06) 523-534
  • 69 Yeshaya A, Orvieto R, Dicker D, Karp M, Ben-Rafael Z. Menstrual characteristics of women suffering from insulin-dependent diabetes mellitus. Int J Fertil Menopausal Stud 1995; 40 (05) 269-273
  • 70 Dorman JS, Steenkiste AR, Foley TP. , et al; Familial Autoimmune and Diabetes (FAD) Study. Menopause in type 1 diabetic women: is it premature?. Diabetes 2001; 50 (08) 1857-1862
  • 71 Isik S, Ozcan HN, Ozuguz U. , et al. Evaluation of ovarian reserve based on hormonal parameters, ovarian volume, and antral follicle count in women with type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97 (01) 261-269
  • 72 Brand JS, van der Schouw YT, Onland-Moret NC. , et al; InterAct Consortium. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care 2013; 36 (04) 1012-1019
  • 73 Cooley M, Bakalov V, Bondy CA. Lipid profiles in women with 45,X vs 46,XX primary ovarian failure. JAMA 2003; 290 (16) 2127-2128
  • 74 Ewertz M, Mellemkjaer L, Poulsen AH. , et al. Hormone use for menopausal symptoms and risk of breast cancer. A Danish cohort study. Br J Cancer 2005; 92 (07) 1293-1297
  • 75 Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol 2010; 28 (02) 240-244
  • 76 Giordano S, Garrett-Mayer E, Mittal N. , et al. Association of BRCA1 mutations with impaired ovarian reserve: connection between infertility and breast/ovarian cancer risk. J Adolesc Young Adult Oncol 2016; 5 (04) 337-343
  • 77 Finch A, Valentini A, Greenblatt E. , et al; Hereditary Breast Cancer Study Group. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation. Fertil Steril 2013; 99 (06) 1724-1728
  • 78 Lin WT, Beattie M, Chen LM. , et al. Comparison of age at natural menopause in BRCA1/2 mutation carriers with a non-clinic-based sample of women in northern California. Cancer 2013; 119 (09) 1652-1659
  • 79 Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346 (6213): 1258096
  • 80 Singh P, Schimenti JC. The genetics of human infertility by functional interrogation of SNPs in mice. Proc Natl Acad Sci U S A 2015; 112 (33) 10431-10436
  • 81 Plant TM, Zeleznik A, Knobil E. Knobil and Neill's Physiology of Reproduction. 4th ed. Amsterdam: Academic Press; 2015. . Available at: http://www.sciencedirect.com/science/book/9780123971753 (MIT Access Only)
  • 82 Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 1997; 15 (02) 201-204
  • 83 Layman LC. Mutations in the follicle-stimulating hormone-beta (FSH beta) and FSH receptor genes in mice and humans. Semin Reprod Med 2000; 18 (01) 5-10
  • 84 Pangas SA, Choi Y, Ballow DJ. , et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci U S A 2006; 103 (21) 8090-8095
  • 85 Brown SD, Moore MW. . The International Mouse Phenotyping Consortium. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome 2012; 23 (9–10): 632-640