J Pediatr Genet 2017; 06(04): 215-221
DOI: 10.1055/s-0037-1602696
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Array Characterization of Prenatally Diagnosed 15q26 Microdeletion and 2q37.1 Duplication: Report of a New Case with Multicystic Kidneys and Review of the Literature

Molka Kammoun
1   Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Wafa Slimani
1   Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Hanene Hannachi
1   Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Mohamed Bibi
2   Department of Obstetrics and Gynecology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Ali Saad
1   Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
,
Soumaya Mougou-Zerelli
1   Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
› Author Affiliations
Further Information

Publication History

06 February 2017

27 March 2017

Publication Date:
26 April 2017 (online)

Abstract

We report on a molecular cytogenetic characterization of 15q26 deletion and 2q37.1 duplication in a fetus presenting with intrauterine growth restriction (IUGR), diaphragmatic hernia, multicystic kidneys, left kidney pyelectasis, and clubfeet. A terminal 15q26 deletion and a terminal 2q duplication of at least 10 and 9 Mb, respectively, derived from a maternal translocation, were found. The 15q26 deletion represents a contiguous gene deletion syndrome mainly characterized by IUGR, congenital diaphragmatic hernia, and less frequently kidney defects. This deletion encompasses the IGF1R and COUPTF2 genes, known to lead to fetal growth retardation syndrome. However, kidney malformations are less well known in such conditions, and to the best of our knowledge, no candidate gene has been proposed to date. Here, we review the literature of the 15q26 deletion syndrome and suggest that hypoplastic and multicystic kidneys, the most commonly observed anomalies in this condition, should be considered in the prenatal diagnosis setting. Based on COUPTF2 protein function, we hypothesize that its haploinsufficiency might be responsible for the renal pathology.

 
  • References

  • 1 Bhakta KY, Marlin SJ, Shen JJ, Fernandes CJ. Terminal deletion of chromosome 15q26.1: case report and brief literature review. J Perinatol 2005; 25 (06) 429-432
  • 2 Davidsson J, Collin A, Björkhem G, Soller M. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay. BMC Med Genet 2008; 9 (01) 2 . Doi: 10.1186/1471-2350-9-2
  • 3 Ester WA, van Duyvenvoorde HA, de Wit CC. , et al. Two short children born small for gestational age with insulin-like growth factor 1 receptor haploinsufficiency illustrate the heterogeneity of its phenotype. J Clin Endocrinol Metab 2009; 94 (12) 4717-4727
  • 4 Rudaks LI, Nicholl JK, Bratkovic D, Barnett CP. Short stature due to 15q26 microdeletion involving IGF1R: report of an additional case and review of the literature. Am J Med Genet A 2011; 155A (12) 3139-3143
  • 5 Khoury MJ, Erickson JD, Cordero JF, McCarthy BJ. Congenital malformations and intrauterine growth retardation: a population study. Pediatrics 1988; 82 (01) 83-90
  • 6 Klammt J, Kiess W, Pfäffle R. IGF1R mutations as cause of SGA. Best Pract Res Clin Endocrinol Metab 2011; 25 (01) 191-206
  • 7 Weber S, Landwehr C, Renkert M. , et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant 2011; 26 (01) 136-143
  • 8 Lurie IW. Kidney abnormalities in persons with monosomy 15q26. Am J Med Genet A 2008; 146A (13) 1761-1764
  • 9 Brady PD, DeKoninck P, Fryns JP, Devriendt K, Deprest JA, Vermeesch JR. Identification of dosage-sensitive genes in fetuses referred with severe isolated congenital diaphragmatic hernia. Prenat Diagn 2013; 33 (13) 1283-1292
  • 10 Moore KL. The Developing Human. Applied Embryol Teratol 2016
  • 11 Yu C-T, Tang K, Suh JM, Jiang R, Tsai SY, Tsai M-J. COUP-TFII is essential for metanephric mesenchyme formation and kidney precursor cell survival. Development 2012; 139 (13) 2330-2339
  • 12 Faa GVF. . In: Faa GVF. , ed. Development in Renal Pathology. New York, NY; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK: Springer; 2014. . Doi:10.1007/978-1-4939-0947-6
  • 13 Weber S, Taylor JC, Winyard P. , et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 2008; 19 (05) 891-903
  • 14 Hwang D-Y, Dworschak GC, Kohl S. , et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 2014; 85 (06) 1429-1433
  • 15 Fletcher J, Hu M, Berman Y. , et al. Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol 2005; 16 (09) 2754-2761
  • 16 Melnick M, Hodes ME, Nance WE, Yune H, Sweeney A. Branchio-oto-renal dysplasia and branchio-oto dysplasia: two distinct autosomal dominant disorders. Clin Genet 1978; 13 (05) 425-442
  • 17 O'Riordan AM, McGrath N, Sharif F. , et al. Expanding the clinical spectrum of chromosome 15q26 terminal deletions associated with IGF-1 resistance. Eur J Pediatr 2017; 176 (01) 137-142
  • 18 Slavotinek AM, Moshrefi A, Davis R. , et al. Array comparative genomic hybridization in patients with congenital diaphragmatic hernia: mapping of four CDH-critical regions and sequencing of candidate genes at 15q26.1-15q26.2. Eur J Hum Genet 2006; 14 (09) 999-1008
  • 19 Guilherme RS, Meloni Vde F, Takeno SS. , et al. Twenty-year cytogenetic and molecular follow-up of a patient with ring chromosome 15: a case report. J Med Case Reports 2012; 6 (01) 283
  • 20 Tönnies H, Schulze I, Hennies H, Neumann LM, Keitzer R, Neitzel H. De novo terminal deletion of chromosome 15q26.1 characterised by comparative genomic hybridisation and FISH with locus specific probes. J Med Genet 2001; 38 (09) 617-621
  • 21 Hengstschläger M, Mittermayer C, Repa C, Drahonsky R, Deutinger J, Bernaschek G. Association of deletions of the chromosomal region 15q24-ter and diaphragmatic hernia: a new case and discussion of the literature. Fetal Diagn Ther 2004; 19 (06) 510-512
  • 22 Le Caignec C, Boceno M, Saugier-Veber P. , et al. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 2005; 42 (02) 121-128
  • 23 Slavotinek A, Lee SS, Davis R. , et al. Fryns syndrome phenotype caused by chromosome microdeletions at 15q26.2 and 8p23.1. J Med Genet 2005; 42 (09) 730-736
  • 24 Castiglia L, Fichera M, Romano C. , et al. Narrowing the candidate region for congenital diaphragmatic hernia in chromosome 15q26: contradictory results. Am J Hum Genet 2005; 77 (05) 892-894 , author reply 894–895
  • 25 Choi JH, Kang M, Kim GH. , et al. Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2->qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J Clin Endocrinol Metab 2011; 96 (01) E130-E134
  • 26 Gervasini C, Pfundt R, Castronovo P. , et al. Search for genomic imbalances in a cohort of 24 Cornelia de Lange patients negative for mutations in the NIPBL and SMC1L1 genes. Clin Genet 2008; 74 (06) 531-538
  • 27 Schlembach D, Zenker M, Trautmann U, Ulmer R, Beinder E. Deletion 15q24-26 in prenatally detected diaphragmatic hernia: increasing evidence of a candidate region for diaphragmatic development. Prenat Diagn 2001; 21 (04) 289-292
  • 28 Roback EW, Barakat AJ, Dev VG, Mbikay M, Chrétien M, Butler MG. An infant with deletion of the distal long arm of chromosome 15 (q26.1----qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet 1991; 38 (01) 74-79
  • 29 Otto J, Back E, Fürste HO, Abel M, Böhm N, Pringsheim W. Dysplastic features, growth retardation, malrotation of the gut, and fatal ventricular septal defect in a 4-month-old girl with ring chromosome 15. Eur J Pediatr 1984; 142 (03) 229-231
  • 30 De Jong G, Rossouw RA, Retief AE. Ring chromosome 15 in a patient with features of Fryns' syndrome. J Med Genet 1989; 26: 469-472
  • 31 Tümer Z, Harboe TL, Blennow E, Kalscheuer VM, Tommerup N, Brøndum-Nielsen K. Molecular cytogenetic characterization of ring chromosome 15 in three unrelated patients. Am J Med Genet A 2004; 130A (04) 340-344
  • 32 Glass IA, Rauen KA, Chen E. , et al. Ring chromosome 15: characterization by array CGH. Hum Genet 2006; 118 (05) 611-617
  • 33 Hatem E, Meriam BR, Walid D, Adenen M, Moez G, Ali S. Molecular characterization of a ring chromosome 15 in a fetus with intra uterine growth retardation and diaphragmatic hernia. Prenat Diagn 2007; 27 (05) 471-474
  • 34 Kristoffersson U, Heim S, Mandahl N, Sundkvist L, Szelest J, Hägerstrand I. Monosomy and trisomy of 15q24----qter in a family with a translocation t(6;15)(p25;q24). Clin Genet 1987; 32 (03) 169-171
  • 35 Mosca AL, Pinson L, Andrieux J. , et al. Refining the critical region for congenital diaphragmatic hernia on chromosome 15q26 from the study of four fetuses. Prenat Diagn 2011; 31 (09) 912-914
  • 36 Chen CP, Lee CC, Pan CW, Kir TY, Chen BF. Partial trisomy 8q and partial monosomy 15q associated with congenital hydrocephalus, diaphragmatic hernia, urinary tract anomalies, congenital heart defect and kyphoscoliosis. Prenat Diagn 1998; 18 (12) 1289-1293
  • 37 Froster UG, Horn L, Holland H, Strenge S, Faber R. An unbalanced De Novo translocation : Ultrasound, Molecular Cytogenetic and Autopsy ® Ndings. Prenat Diagn 2000; 20 (12) 992-995
  • 38 Berg C, Knüppel M, Geipel A. , et al. Prenatal diagnosis of persistent left superior vena cava and its associated congenital anomalies. Ultrasound Obstet Gynecol 2006; 27 (03) 274-280
  • 39 Klaassens M, Galjaard RJ, Scott DA. , et al. Prenatal detection and outcome of congenital diaphragmatic hernia (CDH) associated with deletion of chromosome 15q26: two patients and review of the literature. Am J Med Genet A 2007; 143A (18) 2204-2212
  • 40 Aviram-Goldring A, Daniely M, Frydman M, Shneyour Y, Cohen H, Barkai G. Congenital diaphragmatic hernia in a family segregating a reciprocal translocation t(5;15)(p15.3;q24). Am J Med Genet 2000; 90 (02) 120-122