Semin Musculoskelet Radiol 2017; 21(02): 137-146
DOI: 10.1055/s-0037-1599205
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging of the Pediatric Knee

Jessica R. Leschied
1   Section of Pediatric Radiology, Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan
,
Kara Gaetke Udager
2   Division of Musculoskeletal Radiology, Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
29 March 2017 (online)

Abstract

The knee joint is commonly injured in the young athlete. This article discusses the common injury patterns around the knee that are unique to this patient population. Pediatric patients have relative weak points at their physes and apophyses that result in different forces on ligaments and bones during injury compared with adults. Common pathologic findings seen on imaging include patellar and patellar tendon injury, physeal fractures, osteochondral abnormality, ligament tears, and meniscal injury. Imaging studies are also performed to evaluate pediatric patients after surgical knee injury repair, and radiologists should be familiar with certain pediatric-specific knee repair techniques and their imaging appearances. A thorough knowledge of normal and pathologic imaging findings of the pediatric knee allows the radiologist to make important diagnostic and management contributions.

 
  • References

  • 1 Ogden JA. Radiology of postnatal skeletal development. X. Patella and tibial tuberosity. Skeletal Radiol 1984; 11 (4) 246-257
  • 2 Kavanagh EC, Zoga A, Omar I, Ford S, Schweitzer M, Eustace S. MRI findings in bipartite patella. Skeletal Radiol 2007; 36 (3) 209-214
  • 3 Dwek JR, Chung CB. The patellar extensor apparatus of the knee. Pediatr Radiol 2008; 38 (9) 925-935
  • 4 Tyler P, Datir A, Saifuddin A. Magnetic resonance imaging of anatomical variations in the knee. Part 2: miscellaneous. Skeletal Radiol 2010; 39 (12) 1175-1186
  • 5 Kan JH, Vogelius ES, Orth RC, Guillerman RP, Jadhav SP. Inferior patellar pole fragmentation in children: just a normal variant?. Pediatr Radiol 2015; 45 (6) 882-887
  • 6 Pai DR, Strouse PJ. MRI of the pediatric knee. AJR Am J Roentgenol 2011; 196 (5) 1019-1027
  • 7 Dupuis CS, Westra SJ, Makris J, Wallace EC. Injuries and conditions of the extensor mechanism of the pediatric knee. Radiographics 2009; 29 (3) 877-886
  • 8 Pretell-Mazzini J, Kelly DM, Sawyer JR , et al. Outcomes and complications of tibial tubercle fractures in pediatric patients: a systematic review of the literature. J Pediatr Orthop 2016; 36 (5) 440-446
  • 9 Nietosvaara Y, Aalto K, Kallio PE. Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop 1994; 14 (4) 513-515
  • 10 Meyers AB, Laor T, Sharafinski M, Zbojniewicz AM. Imaging assessment of patellar instability and its treatment in children and adolescents. Pediatr Radiol 2016; 46 (5) 618-636
  • 11 Biedert RM, Bachmann M. Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 2009; 17 (10) 1225-1230
  • 12 Zaidi A, Babyn P, Astori I, White L, Doria A, Cole W. MRI of traumatic patellar dislocation in children. Pediatr Radiol 2006; 36 (11) 1163-1170
  • 13 Seeley M, Bowman KF, Walsh C, Sabb BJ, Vanderhave KL. Magnetic resonance imaging of acute patellar dislocation in children: patterns of injury and risk factors for recurrence. J Pediatr Orthop 2012; 32 (2) 145-155
  • 14 Palmu S, Kallio PE, Donell ST, Helenius I, Nietosvaara Y. Acute patellar dislocation in children and adolescents: a randomized clinical trial. J Bone Joint Surg Am 2008; 90 (3) 463-470
  • 15 Kim HJ, Lee SH, Kang CH , et al. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques. Korean J Radiol 2011; 12 (1) 78-88
  • 16 Hash II TW. Magnetic resonance imaging of the knee. Sports Health 2013; 5 (1) 78-107
  • 17 Close BJ, Strouse PJ. MR of physeal fractures of the adolescent knee. Pediatr Radiol 2000; 30 (11) 756-762
  • 18 Salter RB. Injuries of the epiphyseal plate. Instr Course Lect 1992; 41: 351-359
  • 19 Segal LS, Shrader MW. Periosteal entrapment in distal femoral physeal fractures: harbinger for premature physeal arrest?. Acta Orthop Belg 2011; 77 (5) 684-690
  • 20 Chen J, Abel MF, Fox MG. Imaging appearance of entrapped periosteum within a distal femoral Salter-Harris II fracture. Skeletal Radiol 2015; 44 (10) 1547-1551
  • 21 Stein-Wexler R, Wootton-Gorges SL, Ozonoff MB. Pediatric Orthopedic Imaging. Berlin, Germany: Springer Berlin Heidelberg; 2015
  • 22 Laor T, Wall EJ, Vu LP. Physeal widening in the knee due to stress injury in child athletes. AJR Am J Roentgenol 2006; 186 (5) 1260-1264
  • 23 Zbojniewicz AM, Laor T. Focal periphyseal edema (FOPE) zone on MRI of the adolescent knee: a potentially painful manifestation of physiologic physeal fusion?. AJR Am J Roentgenol 2011; 197 (4) 998-1004
  • 24 Laor T, Zbojniewicz AM, Eismann EA, Wall EJ. Juvenile osteochondritis dissecans: is it a growth disturbance of the secondary physis of the epiphysis?. AJR Am J Roentgenol 2012; 199 (5) 1121-1128
  • 25 Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 2008; 248 (2) 571-578
  • 26 Yoshida S, Ikata T, Takai H, Kashiwaguchi S, Katoh S, Takeda Y. Osteochondritis dissecans of the femoral condyle in the growth stage. Clin Orthop Relat Res 1998; (346) 162-170
  • 27 Cahill BR, Phillips MR, Navarro R. The results of conservative management of juvenile osteochondritis dissecans using joint scintigraphy. A prospective study. Am J Sports Med 1989; 17 (5) 601-605 ; discussion 605–606
  • 28 Gebarski K, Hernandez RJ. Stage-I osteochondritis dissecans versus normal variants of ossification in the knee in children. Pediatr Radiol 2005; 35 (9) 880-886
  • 29 Jans LB, Jaremko JL, Ditchfield M, Huysse WC, Verstraete KL. MRI differentiates femoral condylar ossification evolution from osteochondritis dissecans. A new sign. Eur Radiol 2011; 21 (6) 1170-1179
  • 30 Nawata K, Teshima R, Morio Y, Hagino H. Anomalies of ossification in the posterolateral femoral condyle: assessment by MRI. Pediatr Radiol 1999; 29 (10) 781-784
  • 31 Samora WP, Chevillet J, Adler B, Young GS, Klingele KE. Juvenile osteochondritis dissecans of the knee: predictors of lesion stability. J Pediatr Orthop 2012; 32 (1) 1-4
  • 32 De Smet AA, Fisher DR, Graf BK, Lange RH. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol 1990; 155 (3) 549-553
  • 33 Eismann EA, Pettit RJ, Wall EJ, Myer GD. Management strategies for osteochondritis dissecans of the knee in the skeletally immature athlete. J Orthop Sports Phys Ther 2014; 44 (9) 665-679
  • 34 Makino A, Muscolo DL, Puigdevall M, Costa-Paz M, Ayerza M. Arthroscopic fixation of osteochondritis dissecans of the knee: clinical, magnetic resonance imaging, and arthroscopic follow-up. Am J Sports Med 2005; 33 (10) 1499-1504
  • 35 Ramirez A, Abril JC, Chaparro M. Juvenile osteochondritis dissecans of the knee: perifocal sclerotic rim as a prognostic factor of healing. J Pediatr Orthop 2010; 30 (2) 180-185
  • 36 Prince JS, Laor T, Bean JA. MRI of anterior cruciate ligament injuries and associated findings in the pediatric knee: changes with skeletal maturation. AJR Am J Roentgenol 2005; 185 (3) 756-762
  • 37 Fayad LM, Parellada JA, Parker L, Schweitzer ME. MR imaging of anterior cruciate ligament tears: is there a gender gap?. Skeletal Radiol 2003; 32 (11) 639-646
  • 38 Huston LJ, Greenfield ML, Wojtys EM. Anterior cruciate ligament injuries in the female athlete. Potential risk factors. Clin Orthop Relat Res 2000; (372) 50-63
  • 39 Kim HK, Laor T, Shire NJ, Bean JA, Dardzinski BJ. Anterior and posterior cruciate ligaments at different patient ages: MR imaging findings. Radiology 2008; 247 (3) 826-835
  • 40 Dare DM, Fabricant PD, McCarthy MM , et al. Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: an MRI-based case-control study of 152 patients. Am J Sports Med 2015; 43 (7) 1632-1639
  • 41 Shaw KA, Dunoski B, Mardis N, Pacicca D. Knee morphometric risk factors for acute anterior cruciate ligament injury in skeletally immature patients. J Child Orthop 2015; 9 (2) 161-168
  • 42 Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ. Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med 2014; 42 (11) 2769-2776
  • 43 Henry J, Chotel F, Chouteau J, Fessy MH, Bérard J, Moyen B. Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity?. Knee Surg Sports Traumatol Arthrosc 2009; 17 (7) 748-755
  • 44 Millett PJ, Willis AA, Warren RF. Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear?. Arthroscopy 2002; 18 (9) 955-959
  • 45 Finlayson CJ, Nasreddine A, Kocher MS. Current concepts of diagnosis and management of ACL injuries in skeletally immature athletes. Phys Sportsmed 2010; 38 (2) 90-101
  • 46 McConkey MO, Bonasia DE, Amendola A. Pediatric anterior cruciate ligament reconstruction. Curr Rev Musculoskelet Med 2011; 4 (2) 37-44
  • 47 Saupe N, White LM, Chiavaras MM , et al. Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up—correlation with functional and clinical evaluation. Radiology 2008; 249 (2) 581-590
  • 48 Zbojniewicz AM, Meyers AB, Wall EJ. Post-operative imaging of anterior cruciate ligament reconstruction techniques across the spectrum of skeletal maturity. Skeletal Radiol 2016; 45 (4) 517-530
  • 49 Kocher MS, Shore B, Nasreddine AY, Heyworth BE. Treatment of posterior cruciate ligament injuries in pediatric and adolescent patients. J Pediatr Orthop 2012; 32 (6) 553-560
  • 50 Ladd PE, Laor T, Emery KH, Salisbury SR, Parikh SN. Medial collateral ligament of the knee on magnetic resonance imaging: does the site of the femoral origin change at different patient ages in children and young adults?. J Pediatr Orthop 2010; 30 (3) 224-230
  • 51 Sankar WN, Wells L, Sennett BJ, Wiesel BB, Ganley TJ. Combined anterior cruciate ligament and medial collateral ligament injuries in adolescents. J Pediatr Orthop 2006; 26 (6) 733-736
  • 52 Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am 1983; 65 (4) 538-547
  • 53 Bellisari G, Samora W, Klingele K. Meniscus tears in children. Sports Med Arthrosc Rev 2011; 19 (1) 50-55
  • 54 Rohren EM, Kosarek FJ, Helms CA. Discoid lateral meniscus and the frequency of meniscal tears. Skeletal Radiol 2001; 30 (6) 316-320
  • 55 Silverman JM, Mink JH, Deutsch AL. Discoid menisci of the knee: MR imaging appearance. Radiology 1989; 173 (2) 351-354
  • 56 Gans I, Bedoya MA, Ho-Fung V, Ganley TJ. Diagnostic performance of magnetic resonance imaging and pre-surgical evaluation in the assessment of traumatic intra-articular knee disorders in children and adolescents: what conditions still pose diagnostic challenges?. Pediatr Radiol 2015; 45 (2) 194-202
  • 57 Kocher MS, DiCanzio J, Zurakowski D, Micheli LJ. Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intraarticular knee disorders in children and adolescents. Am J Sports Med 2001; 29 (3) 292-296