Semin Musculoskelet Radiol 2016; 20(05): 472-485
DOI: 10.1055/s-0036-1594281
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Percutaneous Ablation in Painful Bone Tumors

Anderanik Tomasian
1   Department of Radiology, Musculoskeletal Division, University of Southern California, Los Angeles, California
,
Adam N. Wallace
2   Mallinckrodt Institute of Radiology, Neuroradiology Section, Washington University School of Medicine, Saint Louis, Missouri
,
Travis J. Hillen
3   Mallinckrodt Institute of Radiology, Musculoskeletal Section, Washington University School of Medicine, Saint Louis, Missouri
,
Jack W. Jennings
3   Mallinckrodt Institute of Radiology, Musculoskeletal Section, Washington University School of Medicine, Saint Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
21 December 2016 (online)

Abstract

Percutaneous image-guided ablation has been shown to be safe and effective for the treatment of benign osseous lesions and has evolved into the treatment of metastatic lesions for both pain palliation and local tumor control. Ablation is increasingly becoming part of the treatment algorithm of painful bone lesions, requiring multidisciplinary input from radiation, surgical, and medical oncologists. Substantial pain reduction is often possible in those who have failed to benefit from conventional therapies such as systemic and radiation therapy. This review details the basics of bone ablation including indications, treatment algorithms, ablation modalities, role of imaging, thermo-protective techniques, and the emerging use for local tumor control in patients with oligometastatic disease.

 
  • References

  • 1 Rybak LD. Fire and ice: thermal ablation of musculoskeletal tumors. Radiol Clin North Am 2009; 47 (3) 455-469
  • 2 Wallace AN, Tomasian A, Chang RO, Jennings JW. Treatment of osteoid osteomas using a navigational bipolar radiofrequency ablation system. Cardiovasc Intervent Radiol 2016; 39 (5) 768-772
  • 3 Madaelil TP, Wallace AN, Jennings JW. Radiofrequency ablation alone or in combination with cementoplasty for local control and pain palliation of sacral metastases: preliminary results in 11 patients. Skeletal Radiol 2016; 45 (9) 1213-1219
  • 4 Wallace AN, Huang AJ, Vaswani D, Chang RO, Jennings JW. Combination acetabular radiofrequency ablation and cementoplasty using a navigational radiofrequency ablation device and ultrahigh viscosity cement: technical note. Skeletal Radiol 2016; 45 (3) 401-405
  • 5 Rosenthal DI, Alexander A, Rosenberg AE, Springfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 1992; 183 (1) 29-33
  • 6 Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 2003; 229 (1) 171-175
  • 7 Weber MA, Sprengel SD, Omlor GW , et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol 2015; 44 (7) 981-993
  • 8 Motamedi D, Learch TJ, Ishimitsu DN , et al. Thermal ablation of osteoid osteoma: overview and step-by-step guide. Radiographics 2009; 29 (7) 2127-2141
  • 9 Rosenthal DI, Marota JJ, Hornicek FJ. Osteoid osteoma: elevation of cardiac and respiratory rates at biopsy needle entry into tumor in 10 patients. Radiology 2003; 226 (1) 125-128
  • 10 Rehnitz C, Sprengel SD, Lehner B , et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol 2012; 81 (11) 3426-3434
  • 11 Ringe KI, Rosenthal H, Länger F, Callies T, Wacker F, Raatschen HJ. Radiofrequency ablation of a rare case of an intraosseous hibernoma causing therapy-refractory pain. J Vasc Interv Radiol 2013; 24 (11) 1754-1756
  • 12 Erickson JK, Rosenthal DI, Zaleske DJ, Gebhardt MC, Cates JM. Primary treatment of chondroblastoma with percutaneous radio-frequency heat ablation: report of three cases. Radiology 2001; 221 (2) 463-468
  • 13 Petsas T, Megas P, Papathanassiou Z. Radiofrequency ablation of two femoral head chondroblastomas. Eur J Radiol 2007; 63 (1) 63-67
  • 14 Tins B, Cassar-Pullicino V, McCall I, Cool P, Williams D, Mangham D. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results. Eur Radiol 2006; 16 (4) 804-810
  • 15 Rybak LD, Rosenthal DI, Wittig JC. Chondroblastoma: radiofrequency ablation--alternative to surgical resection in selected cases. Radiology 2009; 251 (2) 599-604
  • 16 Corby RR, Stacy GS, Peabody TD, Dixon LB. Radiofrequency ablation of solitary eosinophilic granuloma of bone. AJR Am J Roentgenol 2008; 190 (6) 1492-1494
  • 17 Zhao Q, Wang L, Chen F, Jiang TA. Percutaneous radiofrequency ablation for treatment of giant cell tumor of bone guided by real-time US fused with CT. J Med Ultrason (2001) 2014; 41 (2) 223-227
  • 18 Ramnath RR, Rosenthal DI, Cates J, Gebhardt M, Quinn RH. Intracortical chondroma simulating osteoid osteoma treated by radiofrequency. Skeletal Radiol 2002; 31 (10) 597-602
  • 19 Rosenthal D, Callstrom MR. Critical review and state of the art in interventional oncology: benign and metastatic disease involving bone. Radiology 2012; 262 (3) 765-780
  • 20 Lane MD, Le HB, Lee S , et al. Combination radiofrequency ablation and cementoplasty for palliative treatment of painful neoplastic bone metastasis: experience with 53 treated lesions in 36 patients. Skeletal Radiol 2011; 40 (1) 25-32
  • 21 Toyota N, Naito A, Kakizawa H , et al. Radiofrequency ablation therapy combined with cementoplasty for painful bone metastases: initial experience. Cardiovasc Intervent Radiol 2005; 28 (5) 578-583
  • 22 Goetz MP, Callstrom MR, Charboneau JW , et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 2004; 22 (2) 300-306
  • 23 Dupuy DE, Liu D, Hartfeil D , et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer 2010; 116 (4) 989-997
  • 24 Gage AA, Baust JG. Cryosurgery for tumors. J Am Coll Surg 2007; 205 (2) 342-356
  • 25 Tomasian A, Wallace A, Northrup B, Hillen TJ, Jennings JW. Spine cryoablation: pain palliation and local tumor control for vertebral metastases. AJNR Am J Neuroradiol 2016; 37 (1) 189-195
  • 26 Whitmore MJ, Hawkins CM, Prologo JD , et al. Cryoablation of osteoid osteoma in the pediatric and adolescent population. J Vasc Interv Radiol 2016; 27 (2) 232-237 ; quiz 238
  • 27 Tsoumakidou G, Too CW, Garnon J, Steib JP, Gangi A. Treatment of a spinal aneurysmal bone cyst using combined image-guided cryoablation and cementoplasty. Skeletal Radiol 2015; 44 (2) 285-289
  • 28 Griauzde J, Gemmete JJ, Farley F. Successful treatment of a Musculoskeletal Tumor Society grade 3 aneurysmal bone cyst with N-butyl cyanoacrylate embolization and percutaneous cryoablation. J Vasc Interv Radiol 2015; 26 (6) 905-909
  • 29 Coupal TM, Mallinson PI, Munk PL, Liu D, Clarkson P, Ouellette H. CT-guided percutaneous cryoablation for osteoid osteoma: initial experience in adults. AJR Am J Roentgenol 2014; 202 (5) 1136-1139
  • 30 Wu B, Xiao YY, Zhang X, Zhao L, Carrino JA. CT-guided percutaneous cryoablation of osteoid osteoma in children: an initial study. Skeletal Radiol 2011; 40 (10) 1303-1310
  • 31 Liu DM, Kee ST, Loh CT , et al. Cryoablation of osteoid osteoma: two case reports. J Vasc Interv Radiol 2010; 21 (4) 586-589
  • 32 Ngo TH, Bize P, Letovanec I, Cherix S, Choong PF, Rüdiger HA. Percutaneous cryoablation for a symptomatic non-ossifying fibroma. A case report. Diagn Interv Imaging 2015; 96 (1) 107-109
  • 33 Kumasaka S, Miyazaki M, Tsushima Y. CT-guided percutaneous cryoablation of an aggressive osteoblastoma: a case report. J Vasc Interv Radiol 2015; 26 (11) 1746-1748
  • 34 Callstrom MR, Atwell TD, Charboneau JW , et al. Painful metastases involving bone: percutaneous image-guided cryoablation—prospective trial interim analysis. Radiology 2006; 241 (2) 572-580
  • 35 Callstrom MR, Dupuy DE, Solomon SB , et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 2013; 119 (5) 1033-1041
  • 36 Kurup AN, Woodrum DA, Morris JM , et al. Cryoablation of recurrent sacrococcygeal tumors. J Vasc Interv Radiol 2012; 23 (8) 1070-1075
  • 37 McMenomy BP, Kurup AN, Johnson GB , et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol 2013; 24 (2) 207-213
  • 38 Prologo JD, Passalacqua M, Patel I, Bohnert N, Corn DJ. Image-guided cryoablation for the treatment of painful musculoskeletal metastatic disease: a single-center experience. Skeletal Radiol 2014; 43 (11) 1551-1559
  • 39 Hegg RM, Kurup AN, Schmit GD , et al. Cryoablation of sternal metastases for pain palliation and local tumor control. J Vasc Interv Radiol 2014; 25 (11) 1665-1670
  • 40 Wallace AN, Mc Williams S, Connolly S , et al. Percutaneous image-guided cryoablation of musculoskeletal metastases: pain palliation and local tumor control. J Vasc Interv Radiol 2016; 27 (12) 1788-1796
  • 41 Friedman MV, Hillen TJ, Wessell DE, Hildebolt CF, Jennings JW. Hip chondrolysis and femoral head osteonecrosis: a complication of periacetabular cryoablation. J Vasc Interv Radiol 2014; 25 (10) 1580-1588
  • 42 Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol 2010; 21 (8) , Suppl): S242-S250
  • 43 Pusceddu C, Sotgia B, Fele RM, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol 2013; 24 (2) 229-233
  • 44 Kostrzewa M, Diezler P, Michaely H , et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Interv Radiol 2014; 25 (1) 106-111
  • 45 Basile A, Failla G, Reforgiato A , et al. The use of microwaves ablation in the treatment of epiphyseal osteoid osteomas. Cardiovasc Intervent Radiol 2014; 37 (3) 737-742
  • 46 Crocoli A, Fruhwirth R, De Vito R, Rosa FM, Inserra A, Falappa P. Microwave thermoablation treatment of chest wall chondroid hamartoma in a child. J Vasc Interv Radiol 2011; 22 (7) 1051-1052
  • 47 Pusceddu C, Sotgia B, Fele RM, Ballicu N, Melis L. Combined microwave ablation and cementoplasty in patients with painful bone metastases at high risk of fracture. Cardiovasc Intervent Radiol 2016; 39 (1) 74-80
  • 48 Kastler A, Alnassan H, Pereira PL , et al. Analgesic effects of microwave ablation of bone and soft tissue tumors under local anesthesia. Pain Med 2013; 14 (12) 1873-1881
  • 49 Kinczewski L. Microwave ablation for palliation of bone metastases. Clin J Oncol Nurs 2016; 20 (3) 249-252
  • 50 Tsoumakidou G, Thénint MA, Garnon J, Buy X, Steib JP, Gangi A. Percutaneous image-guided laser photocoagulation of spinal osteoid osteoma: a single-institution series. Radiology 2016; 278 (3) 936-943
  • 51 Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 2007; 242 (1) 293-301
  • 52 Groenemeyer DHW, Schirp S, Gevargez A. Image-guided percutaneous thermal ablation of bone tumors. Acad Radiol 2002; 9 (4) 467-477
  • 53 Napoli A, Anzidei M, Marincola BC , et al. MR imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics 2013; 33 (6) 1555-1568
  • 54 Napoli A, Anzidei M, Marincola BC , et al. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Invest Radiol 2013; 48 (6) 351-358
  • 55 Yeo SY, Elevelt A, Donato K , et al. Bone metastasis treatment using magnetic resonance-guided high intensity focused ultrasound. Bone 2015; 81: 513-523
  • 56 Joo B, Park MS, Lee SH , et al. Pain palliation in patients with bone metastases using magnetic resonance-guided focused ultrasound with conformal bone system: a preliminary report. Yonsei Med J 2015; 56 (2) 503-509
  • 57 Huisman M, Lam MK, Bartels LW , et al. Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases. J Ther Ultrasound 2014; 2: 16
  • 58 Hurwitz MD, Ghanouni P, Kanaev SV , et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 2014; 106 (5) dju082
  • 59 Geiger D, Napoli A, Conchiglia A , et al. MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. J Bone Joint Surg Am 2014; 96 (9) 743-751
  • 60 Napoli A, Mastantuono M, Cavallo Marincola B , et al. Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment. Radiology 2013; 267 (2) 514-521
  • 61 National Comprehensive Cancer Network. Adult cancer pain v.2, 2016. Available at: https://www.nccn.org/professionals/physician_gls/f_guidelines.asp . Accessed November 21, 2016
  • 62 Singh S, Saha S. Electrical properties of bone. A review. Clin Orthop Relat Res 1984; (186) 249-271
  • 63 Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 2014; 14 (3) 199-208
  • 64 Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N. Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med 2008; 33 (2) 97-101
  • 65 Wang X, Sofocleous CT, Erinjeri JP , et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol 2013; 36 (1) 166-175
  • 66 Saliken JC, McKinnon JG, Gray R. CT for monitoring cryotherapy. AJR Am J Roentgenol 1996; 166 (4) 853-855
  • 67 Wallace AN, Greenwood TJ, Jennings JW. Use of imaging in the management of metastatic spine disease with percutaneous ablation and vertebral augmentation. AJR Am J Roentgenol 2015; 205 (2) 434-441
  • 68 Sainani NI, Gervais DA, Mueller PR, Arellano RS. Imaging after percutaneous radiofrequency ablation of hepatic tumors: Part 1, Normal findings. AJR Am J Roentgenol 2013; 200 (1) 184-193
  • 69 Lee JM, Choi SH, Park HS , et al. Radiofrequency thermal ablation in canine femur: evaluation of coagulation necrosis reproducibility and MRI-histopathologic correlation. AJR Am J Roentgenol 2005; 185 (3) 661-667
  • 70 Eisenhauer EA, Therasse P, Bogaerts J , et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45 (2) 228-247
  • 71 WHO Handbook for Reporting Results of Cancer Treatment. WHO Offset Publication No. 48. Available at: http://apps.who.int/iris/bitstream/10665/37200/1/WHO_OFFSET_48.pdf . Accessed November 21, 2016
  • 72 Kurup AN, Morris JM, Schmit GD , et al. Neuroanatomic considerations in percutaneous tumor ablation. Radiographics 2013; 33: 1195-1215
  • 73 Rutkove SB. Effects of temperature on neuromuscular electrophysiology. Muscle Nerve 2001; 24 (7) 867-882
  • 74 Franz DN, Iggo A. Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol 1968; 199 (2) 319-345
  • 75 Buy X, Tok CH, Szwarc D, Bierry G, Gangi A. Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring. Cardiovasc Intervent Radiol 2009; 32 (3) 529-534
  • 76 Kurup AN, Morris JM, Boon AJ , et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors. J Vasc Interv Radiol 2014; 25 (11) 1657-1664
  • 77 Tsoumakidou G, Garnon J, Ramamurthy N, Buy X, Gangi A. Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation. Cardiovasc Intervent Radiol 2013; 36 (6) 1624-1628