J Pediatr Genet 2017; 06(01): 030-041
DOI: 10.1055/s-0036-1593849
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors

Laila C. Schenkel
1   Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
2   Children's Health Research Institute, London, Ontario, Canada
,
David Rodenhiser
2   Children's Health Research Institute, London, Ontario, Canada
3   Department of Biochemistry, Western University, London, Ontario, Canada
4   Department of Pediatrics, Western University, London, Ontario, Canada
5   London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
6   Department of Oncology, Western University, London, Ontario, Canada
,
Victoria Siu
2   Children's Health Research Institute, London, Ontario, Canada
4   Department of Pediatrics, Western University, London, Ontario, Canada
5   London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
,
Elizabeth McCready
7   Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
,
Peter Ainsworth
1   Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
2   Children's Health Research Institute, London, Ontario, Canada
3   Department of Biochemistry, Western University, London, Ontario, Canada
4   Department of Pediatrics, Western University, London, Ontario, Canada
5   London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
6   Department of Oncology, Western University, London, Ontario, Canada
,
Bekim Sadikovic
1   Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
5   London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
2   Children's Health Research Institute, London, Ontario, Canada
› Author Affiliations
Further Information

Publication History

30 September 2015

14 April 2016

Publication Date:
08 November 2016 (online)

Abstract

There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional “epi/genetic” conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of “DNA encodes RNA encodes protein” to best understand the spectrum of factors that can influence genetic traits in a pediatric population.

 
  • References

  • 1 Graf WD, Kekatpure MV, Kosofsky BE. Prenatal-onset neurodevelopmental disorders secondary to toxins, nutritional deficiencies, and maternal illness. Handb Clin Neurol 2013; 111: 143-159
  • 2 Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011; 31 (03) 363-373
  • 3 Gallou-Kabani C, Junien C. Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 2005; 54 (07) 1899-1906
  • 4 Morris KV, Chan SW, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004; 305 (5688): 1289-1292
  • 5 Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 2004; 431 (7005): 211-217
  • 6 Zaina S, Pérez-Luque EL, Lund G. Genetics talks to epigenetics? The interplay between sequence variants and chromatin structure. Curr Genomics 2010; 11 (05) 359-367
  • 7 Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell 2013; 153 (01) 38-55
  • 8 Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150 (01) 12-27
  • 9 Johnson DG, Dent SY. Chromatin: receiver and quarterback for cellular signals. Cell 2013; 152 (04) 685-689
  • 10 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13 (07) 484-492
  • 11 Kurukuti S, Tiwari VK, Tavoosidana G. , et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 2006; 103 (28) 10684-10689
  • 12 Flanagan JM, Munoz-Alegre M, Henderson S. , et al. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet 2009; 18 (07) 1332-1342
  • 13 Waggoner D. Mechanisms of disease: epigenesis. Semin Pediatr Neurol 2007; 14 (01) 7-14
  • 14 Smith AC, Choufani S, Ferreira JC, Weksberg R. Growth regulation, imprinted genes, and chromosome 11p15.5. Pediatr Res 2007; 61 (5 Pt 2): 43R-47R
  • 15 Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA methylation in mammalian development. Proceedings of the National Academy of Sciences of the United States of America 2014
  • 16 Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74: 481-514
  • 17 Schaefer M, Pollex T, Hanna K. , et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 2010; 24 (15) 1590-1595
  • 18 Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 2014; 4: 80 . Doi: 10.3389/fonc.2014.00080
  • 19 Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10 (11) 805-811
  • 20 Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 2011; 12 (07) 647-656
  • 21 Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 2001; 20 (10) 2536-2544
  • 22 Bai S, Ghoshal K, Datta J, Majumder S, Yoon SO, Jacob ST. DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol 2005; 25 (02) 751-766
  • 23 Ikegami K, Ohgane J, Tanaka S, Yagi S, Shiota K. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. Int J Dev Biol 2009; 53 (02/03) 203-214
  • 24 Eberharter A, Ferreira R, Becker P. Dynamic chromatin: concerted nucleosome remodelling and acetylation. Biol Chem 2005; 386 (08) 745-751
  • 25 Kouzarides T. Chromatin modifications and their function. Cell 2007; 128 (04) 693-705
  • 26 Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128 (04) 707-719
  • 27 Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 2004; 7 (05) 653-662
  • 28 Zhao S, Wang Y, Liang Y. , et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 2011; 63 (05) 1376-1386
  • 29 Plasschaert RN, Bartolomei MS. Genomic imprinting in development, growth, behavior and stem cells. Development 2014; 141 (09) 1805-1813
  • 30 Mackay DJ, Callaway JL, Marks SM. , et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 2008; 40 (08) 949-951
  • 31 Kamiya M, Judson H, Okazaki Y. , et al. The cell cycle control gene ZAC/PLAGL1 is imprinted – a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 2000; 9 (03) 453-460
  • 32 Jan de Beur S, Ding C, Germain-Lee E, Cho J, Maret A, Levine MA. Discordance between genetic and epigenetic defects in pseudohypoparathyroidism type 1b revealed by inconsistent loss of maternal imprinting at GNAS1. Am J Hum Genet 2003; 73 (02) 314-322
  • 33 Wang JC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK. Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet 1991; 48 (06) 1069-1074
  • 34 Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet 1991; 28 (08) 511-514
  • 35 Eggermann T, Netchine I, Temple IK. , et al. Congenital imprinting disorders: EUCID.net – a network to decipher their aetiology and to improve the diagnostic and clinical care. Clin Epigenetics 2015; 7 (01) 23 . Doi: 10.1186/s13148-015-0050-z
  • 36 Williams CA, Beaudet AL, Clayton-Smith J. , et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A 2006; 140 (05) 413-418
  • 37 Cassidy SB, Driscoll DJ. Prader–Willi syndrome. Eur J Hum Genet 2009; 17 (01) 3-13
  • 38 Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader–Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2001; 2: 153-175
  • 39 Schaaf CP, Gonzalez-Garay ML, Xia F. , et al. Truncating mutations of MAGEL2 cause Prader–Willi phenotypes and autism. Nat Genet 2013; 45 (11) 1405-1408
  • 40 Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B. Epimutations in Prader–Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 2003; 72 (03) 571-577
  • 41 Azzi S, Abi Habib W, Netchine I. Beckwith–Wiedemann and Russell–Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes 2014; 21 (01) 30-38
  • 42 Gropman AL, Adams DR. Atypical patterns of inheritance. Semin Pediatr Neurol 2007; 14 (01) 34-45
  • 43 Engel JR, Smallwood A, Harper A. , et al. Epigenotype–phenotype correlations in Beckwith–Wiedemann syndrome. J Med Genet 2000; 37 (12) 921-926
  • 44 Meyer E, Lim D, Pasha S. , et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith–Wiedemann Syndrome). PLoS Genet 2009; 5 (03) e1000423 . Doi: 10.1371/journal.pgen.1000423
  • 45 Alisch RS, Wang T, Chopra P, Visootsak J, Conneely KN, Warren ST. Genome-wide analysis validates aberrant methylation in fragile X syndrome is specific to the FMR1 locus. BMC Med Genet 2013; 14: 18 . Doi: 10.1186/1471-2350-14-18
  • 46 Saldarriaga W, Tassone F, González-Teshima LY, Forero-Forero JV, Ayala-Zapata S, Hagerman R. Fragile X syndrome. Colomb Med (Cali) 2014; 45 (04) 190-198
  • 47 Campuzano V, Montermini L, Lutz Y. , et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 1997; 6 (11) 1771-1780
  • 48 Sandi C, Sandi M, Anjomani Virmouni S, Al-Mahdawi S, Pook MA. Epigenetic-based therapies for Friedreich ataxia. Front Genet 2014; 5: 165 . Doi: 10.3389/fgene.2014.00165
  • 49 Al-Mahdawi S, Pinto RM, Ismail O. , et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 2008; 17 (05) 735-746
  • 50 Greene E, Mahishi L, Entezam A, Kumari D, Usdin K. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 2007; 35 (10) 3383-3390
  • 51 Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429 (6990): 457-463
  • 52 Loomis EW, Sanz LA, Chédin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 2014; 10 (04) e1004294 . Doi: 10.1371/journal.pgen.1004294
  • 53 Chen X, Mariappan SV, Catasti P. , et al. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc Natl Acad Sci U S A 1995; 92 (11) 5199-5203
  • 54 Laayoun A, Smith SS. Methylation of slipped duplexes, snapbacks and cruciforms by human DNA(cytosine-5) methyltransferase. Nucleic Acids Res 1995; 23 (09) 1584-1589
  • 55 Grafodatskaya D, Chung BH, Butcher DT. , et al. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 lysine 4 demethylase KDM5C. BMC Med Genomics 2013; 6: 1 . Doi: 10.1186/1755-8794-6-1
  • 56 Jin B, Tao Q, Peng J. , et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 2008; 17 (05) 690-709
  • 57 Hansen RS, Wijmenga C, Luo P. , et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 1999; 96 (25) 14412-14417
  • 58 Gatto S, Della Ragione F, Cimmino A. , et al. Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome. Epigenetics 2010; 5 (05) 427-443
  • 59 Ehrlich M, Sanchez C, Shao C. , et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 2008; 41 (04) 253-271
  • 60 Jefferson A, Colella S, Moralli D. , et al. Altered intra-nuclear organisation of heterochromatin and genes in ICF syndrome. PLoS One 2010; 5 (06) e11364 . Doi: 10.1371/journal.pone.0011364
  • 61 Klein CJ, Bird T, Ertekin-Taner N. , et al. DNMT1 mutation hot spot causes varied phenotypes of HSAN1 with dementia and hearing loss. Neurology 2013; 80 (09) 824-828
  • 62 Klein CJ, Botuyan MV, Wu Y. , et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 2011; 43 (06) 595-600
  • 63 Murata T, Kurokawa R, Krones A. , et al. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein–Taybi syndrome. Hum Mol Genet 2001; 10 (10) 1071-1076
  • 64 Park E, Kim Y, Ryu H, Kowall NW, Lee J, Ryu H. Epigenetic mechanisms of Rubinstein–Taybi syndrome. Neuromolecular Med 2014; 16 (01) 16-24
  • 65 Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8 (11) 1056-1072
  • 66 Biancalana V, Briard ML, David A. , et al. Confirmation and refinement of the genetic localization of the Coffin–Lowry syndrome locus in Xp22.1–p22.2. Am J Hum Genet 1992; 50 (05) 981-987
  • 67 Hood RL, Lines MA, Nikkel SM. , et al; FORGE Canada Consortium. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating–Harbor syndrome. Am J Hum Genet 2012; 90 (02) 308-313
  • 68 Wong MM, Cox LK, Chrivia JC. The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 2007; 282 (36) 26132-26139
  • 69 Monroy MA, Schott NM, Cox L, Chen JD, Ruh M, Chrivia JC. SNF2-related CBP activator protein (SRCAP) functions as a coactivator of steroid receptor-mediated transcription through synergistic interactions with CARM-1 and GRIP-1. Mol Endocrinol 2003; 17 (12) 2519-2528
  • 70 Gibbons RJ, Wada T, Fisher CA. , et al. Mutations in the chromatin-associated protein ATRX. Hum Mutat 2008; 29 (06) 796-802
  • 71 Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28 (10) 1057-1068
  • 72 Gibson JH, Slobedman B, KN H. , et al. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 2010; 11: 53 . Doi: 10.1186/1471-2202-11-53
  • 73 Ghosh RP, Horowitz-Scherer RA, Nikitina T, Gierasch LM, Woodcock CL. Rett syndrome-causing mutations in human MeCP2 result in diverse structural changes that impact folding and DNA interactions. J Biol Chem 2008; 283 (29) 20523-20534
  • 74 Simpson MA, Deshpande C, Dafou D. , et al. De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar syndrome. Am J Hum Genet 2012; 90 (02) 290-294
  • 75 Clayton-Smith J, O'Sullivan J, Daly S. , et al. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet 2011; 89 (05) 675-681
  • 76 Williams SR, Aldred MA, Der Kaloustian VM. , et al. Haploinsufficiency of HDAC4 causes Brachydactyly mental retardation syndrome, with Brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet 2010; 87 (02) 219-228
  • 77 Tatton-Brown K, Rahman N. Sotos syndrome. Eur J Hum Genet 2007; 15 (03) 264-271
  • 78 Tatton-Brown K, Murray A, Hanks S. , et al; Childhood Overgrowth Consortium. Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype. Am J Med Genet A 2013; 161A (12) 2972-2980
  • 79 Kleefstra T, Brunner HG, Amiel J. , et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 2006; 79 (02) 370-377
  • 80 Ng SB, Bigham AW, Buckingham KJ. , et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010; 42 (09) 790-793
  • 81 Van Laarhoven PM, Neitzel LR, Quintana AM. , et al. Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum Mol Genet 2015; 24 (15) 4443-4453
  • 82 Laumonnier F, Holbert S, Ronce N. , et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet 2005; 42 (10) 780-786
  • 83 Siderius LE, Hamel BC, van Bokhoven H. , et al. X-linked mental retardation associated with cleft lip/palate maps to Xp11.3-q21.3. Am J Med Genet 1999; 85 (03) 216-220
  • 84 Claes S, Devriendt K, Van Goethem G. , et al. Novel syndromic form of X-linked complicated spastic paraplegia. Am J Med Genet 2000; 94 (01) 1-4
  • 85 Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 2015; 16 (02) 71-84
  • 86 Hawkins PG, Morris KV. RNA and transcriptional modulation of gene expression. Cell Cycle 2008; 7 (05) 602-607
  • 87 Wakabayashi K, Mori F, Kakita A, Takahashi H, Utsumi J, Sasaki H. Analysis of microRNA from archived formalin-fixed paraffin-embedded specimens of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2014; 2: 173 . Doi: 10.1186/s40478-014-0173-z
  • 88 Lu J, Getz G, Miska EA. , et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435 (7043): 834-838
  • 89 Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006; 150 (02) 205-215
  • 90 Sreedharan J, Blair IP, Tripathi VB. , et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008; 319 (5870): 1668-1672
  • 91 Zhang Z, Almeida S, Lu Y. , et al. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS One 2013; 8 (10) e76055 . Doi: 10.1371/journal.pone.0076055
  • 92 Kozlova IuO, Zabnenkova VV, Shilova NV. , et al. [Genetic and clinical characteristics of 22q11.2 deletion syndrome]. Genetika 2014; 50 (05) 602-610
  • 93 Rio Frio T, Bahubeshi A, Kanellopoulou C. , et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli–Leydig cell tumors. JAMA 2011; 305 (01) 68-77
  • 94 Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013; 132 (04) 359-383
  • 95 Huidobro C, Fernandez AF, Fraga MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 2013; 70 (09) 1543-1573
  • 96 van Bokhoven H. Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 2011; 45: 81-104
  • 97 Hutchinson JN, Raj T, Fagerness J. , et al. Allele-specific methylation occurs at genetic variants associated with complex disease. PLoS One 2014; 9 (06) e98464 . Doi: 10.1371/journal.pone.0098464
  • 98 Tammimies K, Tapia-Páez I, Rüegg J. , et al. The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation. Mol Endocrinol 2012; 26 (04) 619-629
  • 99 Zhang D, Cheng L, Badner JA. , et al. Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 2010; 86 (03) 411-419
  • 100 Liu Y, Li X, Aryee MJ. , et al. GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. Am J Hum Genet 2014; 94 (04) 485-495
  • 101 Liu J, Hutchison K, Perrone-Bizzozero N, Morgan M, Sui J, Calhoun V. Identification of genetic and epigenetic marks involved in population structure. PLoS One 2010; 5 (10) e13209 . Doi: 10.1371/journal.pone.0013209
  • 102 Feinberg AP, Irizarry RA, Fradin D. , et al. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2010; 2 (49) 49ra67 . Doi: 10.1126/scitranslmed.3001262
  • 103 Zheleznyakova GY, Voisin S, Kiselev AV. , et al. Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur J Hum Genet 2013; 21 (09) 988-993
  • 104 Jones TI, King OD, Himeda CL. , et al. Individual epigenetic status of the pathogenic D4Z4 macrosatellite correlates with disease in facioscapulohumeral muscular dystrophy. Clin Epigenetics 2015; 7 (01) 37 . Doi: 10.1186/s13148-015-0072-6
  • 105 Bell CG, Wilson GA, Butcher LM, Roos C, Walter L, Beck S. Human-specific CpG “beacons” identify loci associated with human-specific traits and disease. Epigenetics 2012; 7 (10) 1188-1199
  • 106 Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev 2013; 35 (02) 106-110
  • 107 Durand CM, Betancur C, Boeckers TM. , et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007; 39 (01) 25-27
  • 108 Moessner R, Marshall CR, Sutcliffe JS. , et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007; 81 (06) 1289-1297
  • 109 Boccuto L, Lauri M, Sarasua SM. , et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet 2013; 21 (03) 310-316
  • 110 Beri S, Tonna N, Menozzi G, Bonaglia MC, Sala C, Giorda R. DNA methylation regulates tissue-specific expression of Shank3. J Neurochem 2007; 101 (05) 1380-1391
  • 111 Zhu L, Wang X, Li XL. , et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet 2014; 23 (06) 1563-1578
  • 112 Gauthier J, Champagne N, Lafrenière RG. , et al; S2D Team. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci U S A 2010; 107 (17) 7863-7868
  • 113 Dick KJ, Nelson CP, Tsaprouni L. , et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet 2014; 383 (9933): 1990-1998
  • 114 Rakyan VK, Beyan H, Down TA. , et al. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 2011; 7 (09) e1002300 . Doi: 10.1371/journal.pgen.1002300
  • 115 Herold KC, Vignali DA, Cooke A, Bluestone JA. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 2013; 13 (04) 243-256
  • 116 Fradin D, Le Fur S, Mille C. , et al. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS One 2012; 7 (05) e36278 . Doi: 10.1371/journal.pone.0036278
  • 117 Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015; 145 (05) 1109S-1115S
  • 118 Finer S, Mathews C, Lowe R. , et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet 2015; 24 (11) 3021-3029
  • 119 Krakowiak P, Walker CK, Bremer AA. , et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 2012; 129 (05) e1121-e1128
  • 120 Duijts L, Reiss IK, Brusselle G, de Jongste JC. Early origins of chronic obstructive lung diseases across the life course. Eur J Epidemiol 2014; 29 (12) 871-885
  • 121 Haycock PC. Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 2009; 81 (04) 607-617
  • 122 Osborne-Majnik A, Fu Q, Lane RH. Epigenetic mechanisms in fetal origins of health and disease. Clin Obstet Gynecol 2013; 56 (03) 622-632
  • 123 Tobi EW, Heijmans BT, Kremer D. , et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 2011; 6 (02) 171-176
  • 124 Chen D, Zhang A, Fang M. , et al. Increased methylation at differentially methylated region of GNAS in infants born to gestational diabetes. BMC Med Genet 2014; 15 (01) 108 . Doi: 10.1186/s12881-014-0108-3
  • 125 Nomura Y, Marks DJ, Grossman B. , et al. Exposure to gestational diabetes mellitus and low socioeconomic status: effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch Pediatr Adolesc Med 2012; 166 (04) 337-343
  • 126 Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene–environment interactions. Dialogues Clin Neurosci 2012; 14 (03) 281-292
  • 127 Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 2010; 49 (08) 794-809
  • 128 Soubry A, Murphy SK, Wang F. , et al. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 2015; 39 (04) 650-657
  • 129 Soto-Ramírez N, Arshad SH, Holloway JW. , et al. The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 years. Clin Epigenetics 2013; 5 (01) 1 . Doi: 10.1186/1868-7083-5-1
  • 130 Patil VK, Holloway JW, Zhang H. , et al. Interaction of prenatal maternal smoking, interleukin 13 genetic variants and DNA methylation influencing airflow and airway reactivity. Clin Epigenetics 2013; 5 (01) 22 . Doi: 10.1186/1868-7083-5-22
  • 131 Qiu W, Baccarelli A, Carey VJ. , et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med 2012; 185 (04) 373-381
  • 132 Zhou FC, Balaraman Y, Teng M, Liu Y, Singh RP, Nephew KP. Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res 2011; 35 (04) 735-746
  • 133 Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res 1991; 15 (03) 395-398
  • 134 Turan N, Katari S, Gerson LF. , et al. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010; 6 (07) e1001033 . Doi: 10.1136/jmg.2004.026930
  • 135 Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 2005; 42 (04) 289-291
  • 136 Lim D, Bowdin SC, Tee L. , et al. Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 2009; 24 (03) 741-747
  • 137 Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril 2009; 91 (02) 305-315