Semin Musculoskelet Radiol 2016; 20(04): 345-352
DOI: 10.1055/s-0036-1592433
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Distinguishing Benign and Malignant Vertebral Fractures Using CT and MRI

Benedikt J. Schwaiger
1   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Alexandra S. Gersing
1   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Thomas Baum
2   Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Christian R. Krestan
3   Department of Biomedical Imaging und Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
,
Jan S. Kirschke
1   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
14 November 2016 (online)

Abstract

The differential diagnosis between benign and malignant vertebral fractures is a common challenge in clinical practice, especially because osteoporotic fractures become more frequent within the aging population and many malignant diseases spread to the bone first, impacting bone integrity. This article reviews the morphological features and computed tomography (CT) and magnetic resonance imaging (MRI) imaging findings that help differentiate between benign and malignant fractures. Newer techniques such as MR-based diffusion-weighted imaging, dynamic contrast-enhanced MR, and chemical-shift imaging as well as hybrid techniques such as positron emission tomography-CT are also discussed briefly.

 
  • References

  • 1 Schuit SC, van der Klift M, Weel AE , et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004; 34 (1) 195-202
  • 2 Rizzoli R, Body JJ, Brandi ML , et al; International Osteoporosis Foundation Committee of Scientific Advisors Working Group on Cancer-Induced Bone Disease. Cancer-associated bone disease. Osteoporos Int 2013; 24 (12) 2929-2953
  • 3 Roodman GD. Mechanisms of bone metastasis. Discov Med 2004; 4 (22) 144-148
  • 4 Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 2003; 23 (1) 179-187
  • 5 Ortiz Gómez JA. The incidence of vertebral body metastases. Int Orthop 1995; 19 (5) 309-311
  • 6 Hansen EJ, Simony A, Carreon L, Andersen MO. Rate of unsuspected malignancy in patients with vertebral compression fracture undergoing percutaneous vertebroplasty. Spine 2016; 41 (6) 549-552
  • 7 Kubota T, Yamada K, Ito H, Kizu O, Nishimura T. High-resolution imaging of the spine using multidetector-row computed tomography: differentiation between benign and malignant vertebral compression fractures. J Comput Assist Tomogr 2005; 29 (5) 712-719
  • 8 Laredo JD, Lakhdari K, Bellaïche L, Hamze B, Janklewicz P, Tubiana JM. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology 1995; 194 (1) 41-48
  • 9 Tsujio T, Nakamura H, Terai H , et al. Characteristic radiographic or magnetic resonance images of fresh osteoporotic vertebral fractures predicting potential risk for nonunion: a prospective multicenter study. Spine 2011; 36 (15) 1229-1235
  • 10 Murata K, Watanabe G, Kawaguchi S , et al. Union rates and prognostic variables of osteoporotic vertebral fractures treated with a rigid external support. J Neurosurg Spine 2012; 17 (5) 469-475
  • 11 Kanchiku T, Imajo Y, Suzuki H, Yoshida Y, Taguchi T. Usefulness of an early MRI-based classification system for predicting vertebral collapse and pseudoarthrosis after osteoporotic vertebral fractures. J Spinal Disord Tech 2014; 27 (2) E61-E65
  • 12 Golimbu C, Firooznia H, Rafii M. The intravertebral vacuum sign. Spine 1986; 11 (10) 1040-1043
  • 13 Resnick D, Niwayama G, Guerra Jr J, Vint V, Usselman J. Spinal vacuum phenomena: anatomical study and review. Radiology 1981; 139 (2) 341-348
  • 14 Bhalla S, Reinus WR. The linear intravertebral vacuum: a sign of benign vertebral collapse. AJR Am J Roentgenol 1998; 170 (6) 1563-1569
  • 15 Cuénod CA, Laredo JD, Chevret S , et al. Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology 1996; 199 (2) 541-549
  • 16 Ishiyama M, Fuwa S, Numaguchi Y, Kobayashi N, Saida Y. Pedicle involvement on MR imaging is common in osteoporotic compression fractures. AJNR Am J Neuroradiol 2010; 31 (4) 668-673
  • 17 Shih TT, Huang KM, Li YW. Solitary vertebral collapse: distinction between benign and malignant causes using MR patterns. J Magn Reson Imaging 1999; 9 (5) 635-642
  • 18 Schellinger D. Patterns of anterior spinal canal involvement by neoplasms and infections. AJNR Am J Neuroradiol 1996; 17 (5) 953-959
  • 19 Hanrahan CJ, Shah LM. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. AJR Am J Roentgenol 2011; 197 (6) 1309-1321
  • 20 Torres C, Hammond I. Computed tomography and magnetic resonance imaging in the differentiation of osteoporotic fractures from neoplastic metastatic fractures. J Clin Densitom 2016; 19 (1) 63-69
  • 21 Bae WC, Statum S, Zhang Z , et al. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 2013; 266 (2) 564-574
  • 22 Mirowitz SA, Apicella P, Reinus WR, Hammerman AM. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol 1994; 162 (1) 215-221
  • 23 Tokuda O, Hayashi N, Taguchi K, Matsunaga N. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol 2005; 34 (10) 632-638
  • 24 An HS, Andreshak TG, Nguyen C, Williams A, Daniels D. Can we distinguish between benign versus malignant compression fractures of the spine by magnetic resonance imaging?. Spine 1995; 20 (16) 1776-1782
  • 25 Frager D, Elkin C, Swerdlow M, Bloch S. Subacute osteoporotic compression fracture: misleading magnetic resonance appearance. Skeletal Radiol 1988; 17 (2) 123-126
  • 26 Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 2002; 225 (3) 730-735
  • 27 Linn J, Birkenmaier C, Hoffmann RT, Reiser M, Baur-Melnyk A. The intravertebral cleft in acute osteoporotic fractures: fluid in magnetic resonance imaging-vacuum in computed tomography?. Spine 2009; 34 (2) E88-E93
  • 28 Kaplan PA, Orton DF, Asleson RJ. Osteoporosis with vertebral compression fractures, retropulsed fragments, and neurologic compromise. Radiology 1987; 165 (2) 533-535
  • 29 Rupp RE, Ebraheim NA, Coombs RJ. Magnetic resonance imaging differentiation of compression spine fractures or vertebral lesions caused by osteoporosis or tumor. Spine 1995; 20 (23) 2499-2503 ; discussion 2504
  • 30 Bousson V, Royer M, Cortet B. Osteoporotic fractures: challenging cases and diagnostic pitfalls. Joint Bone Spine 2012; 79 (Suppl. 02) S91-S95
  • 31 Matin P. The appearance of bone scans following fractures, including immediate and long-term studies. J Nucl Med 1979; 20 (12) 1227-1231
  • 32 Leeds NE, Kumar AJ, Zhou XJ, McKinnon GC. Magnetic resonance imaging of benign spinal lesions simulating metastasis: role of diffusion-weighted imaging. Top Magn Reson Imaging 2000; 11 (4) 224-234
  • 33 Tan SB, Kozak JA, Mawad ME. The limitations of magnetic resonance imaging in the diagnosis of pathologic vertebral fractures. Spine 1991; 16 (8) 919-923
  • 34 Kim DY, Lee SH, Jang JS, Chung SK, Lee HY. Intravertebral vacuum phenomenon in osteoporotic compression fracture: report of 67 cases with quantitative evaluation of intravertebral instability. J Neurosurg 2004; 100 (1, Suppl Spine): 24-31
  • 35 Karchevsky M, Babb JS, Schweitzer ME. Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol 2008; 37 (9) 791-795
  • 36 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 2006; 24 (6) 1207-1220
  • 37 Geith T, Schmidt G, Biffar A , et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. AJR Am J Roentgenol 2012; 199 (5) 1083-1092
  • 38 Baur A, Stäbler A, Brüning R , et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207 (2) 349-356
  • 39 Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol 2000; 21 (5) 948-953
  • 40 Hackländer T, Scharwächter C, Golz R, Mertens H. Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors [in German]. Rofo 2006; 178 (4) 416-424
  • 41 Balliu E, Vilanova JC, Peláez I , et al. Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 2009; 69 (3) 560-566
  • 42 Tang G, Liu Y, Li W, Yao J, Li B, Li P. Optimization of b value in diffusion-weighted MRI for the differential diagnosis of benign and malignant vertebral fractures. Skeletal Radiol 2007; 36 (11) 1035-1041
  • 43 Chan JH, Peh WC, Tsui EY , et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 2002; 75 (891) 207-214
  • 44 Oztekin O, Ozan E, Hilal Adibelli Z, Unal G, Abali Y. SSH-EPI diffusion-weighted MR imaging of the spine with low b values: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema?. Skeletal Radiol 2009; 38 (7) 651-658
  • 45 Park SW, Lee JH, Ehara S , et al. Single shot fast spin echo diffusion-weighted MR imaging of the spine; is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema?. Clin Imaging 2004; 28 (2) 102-108
  • 46 Brockstedt S, Moore JR, Thomsen C, Holtås S, Ståhlberg F. High-resolution diffusion imaging using phase-corrected segmented echo-planar imaging. Magn Reson Imaging 2000; 18 (6) 649-657
  • 47 Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009; 62 (2) 468-475
  • 48 Merboldt KD, Bruhn H, Frahm J, Gyngell ML, Hänicke W, Deimling M. MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med 1989; 9 (3) 423-429
  • 49 Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR Biomed 2015; June 26 (Epub ahead of print)
  • 50 Dietrich O, Biffar A, Reiser MF, Baur-Melnyk A. Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 2009; 13 (2) 134-144
  • 51 Biffar A, Baur-Melnyk A, Schmidt GP, Reiser MF, Dietrich O. Quantitative analysis of the diffusion-weighted steady-state free precession signal in vertebral bone marrow lesions. Invest Radiol 2011; 46 (10) 601-609
  • 52 Chen WT, Shih TT, Chen RC , et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging 2002; 15 (3) 308-314
  • 53 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 1997; 26 (7) 414-418
  • 54 Griffith JF, Yeung DK, Antonio GE , et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236 (3) 945-951
  • 55 Savvopoulou V, Maris TG, Vlahos L, Moulopoulos LA. Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI). Eur Radiol 2008; 18 (9) 1876-1883
  • 56 Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A. Diffusion and perfusion imaging of bone marrow. Eur J Radiol 2010; 76 (3) 323-328
  • 57 Geith T, Biffar A, Schmidt G , et al. Quantitative analysis of acute benign and malignant vertebral body fractures using dynamic contrast-enhanced MRI. AJR Am J Roentgenol 2013; 200 (6) W635-W643
  • 58 Ragab Y, Emad Y, Gheita T , et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift in-phase and out-of-phase MR imaging. Eur J Radiol 2009; 72 (1) 125-133
  • 59 Zajick Jr DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005; 237 (2) 590-596
  • 60 Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 2006; 27 (6) 1183-1188
  • 61 Baum T, Yap SP, Dieckmeyer M , et al. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging 2015; 42 (4) 1018-1023
  • 62 Kato K, Aoki J, Endo K. Utility of FDG-PET in differential diagnosis of benign and malignant fractures in acute to subacute phase. Ann Nucl Med 2003; 17 (1) 41-46
  • 63 Shin DS, Shon OJ, Byun SJ, Choi JH, Chun KA, Cho IH. Differentiation between malignant and benign pathologic fractures with F-18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Skeletal Radiol 2008; 37 (5) 415-421
  • 64 Shon IH, Fogelman I. F-18 FDG positron emission tomography and benign fractures. Clin Nucl Med 2003; 28 (3) 171-175
  • 65 Cho WI, Chang UK. Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures. J Neurosurg Spine 2011; 14 (2) 177-183