Journal of Pediatric Neuroradiology 2016; 05(02): 049-053
DOI: 10.1055/s-0036-1592352
Review Article
Georg Thieme Verlag KG Stuttgart • New York

Common Pediatric Central Nervous System Tumors: Histology and Molecular Biology

Anna C. Goussia
1   Department of Pathology, School of Medicine, University of Ioannina, Ioannina, Greece
› Author Affiliations
Further Information

Publication History

06 April 2016

25 July 2016

Publication Date:
14 September 2016 (online)

Abstract

Central nervous system tumors represent the most common solid tumors of childhood. The heterogeneous group of gliomas comprises the majority of pediatric tumors while embryonal neoplasms represent the second most frequent group of tumors. Histopathological diagnosis according to World Health Organization is of great importance for defining prognosis and choosing the appropriate treatment. Recently, attempts have been made to correlate specific genomic alterations to clinical outcome. Adding molecular information to classic histology seems to improve diagnostic accuracy and risk stratification of patients.

 
  • References

  • 1 Ostrom QT, Gittleman H, Liao P , et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncol 2014; 16 (Suppl. 04) iv1-iv63
  • 2 Louis DN, Ohgaki H, Wiestler OD, , et al. WHO Classification of Tumours of the Central Nervous System (Revised 4th edition). Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. , eds. Lyon, France: IARC; 2016
  • 3 Rodriguez FJ, Perry A, Gutmann DH , et al. Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol 2008; 67 (3) 240-249
  • 4 Kurwale NS, Suri V, Suri A , et al. Predictive factors for early symptomatic recurrence in pilocytic astrocytoma: does angiogenesis have a role to play?. J Clin Neurosci 2011; 18 (4) 472-477
  • 5 Jones DT, Kocialkowski S, Liu L , et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008; 68 (21) 8673-8677
  • 6 Belirgen M, Berrak SG, Ozdag H, Bozkurt SU, Eksioglu-Demiralp E, Ozek MM. Biologic tumor behavior in pilocytic astrocytomas. Childs Nerv Syst 2012; 28 (3) 375-389
  • 7 Lambert SR, Witt H, Hovestadt V , et al. Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathol 2013; 126 (2) 291-301
  • 8 Bonfield CM, Steinbok P. Pediatric cerebellar astrocytoma: a review. Childs Nerv Syst 2015; 31 (10) 1677-1685
  • 9 Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64 (6) 479-489
  • 10 Tsugu H, Oshiro S, Yanai F , et al. Management of pilomyxoid astrocytomas: our experience. Anticancer Res 2009; 29 (3) 919-926
  • 11 Goussia AC, Agnantis NJ, Rao JS, Kyritsis AP. Cytogenetic and molecular abnormalities in astrocytic gliomas (Review). Oncol Rep 2000; 7 (2) 401-412
  • 12 Goussia AC, Polyzoidis K, Bai M , et al. Molecular abnormalities in gliomas. In: Drevelegas A, ed. Imaging of Brain Tumors with Histological Correlations. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 2011
  • 13 Zhang J, Wu G, Miller CP , et al; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 2013; 45 (6) 602-612
  • 14 Sturm D, Bender S, Jones DT , et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14 (2) 92-107
  • 15 Goussia AC, Kyritsis AP, Mitlianga P, Bruner JM. Genetic abnormalities in oligodendroglial and ependymal tumours. J Neurol 2001; 248 (12) 1030-1035
  • 16 Rousseau E, Ruchoux MM, Scaravilli F , et al. CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol 2003; 29 (6) 574-583
  • 17 Kilday J-P, Rahman R, Dyer S , et al. Pediatric ependymoma: biological perspectives. Mol Cancer Res 2009; 7 (6) 765-786
  • 18 Rousseau A, Idbaih A, Ducray F , et al. Specific chromosomal imbalances as detected by array CGH in ependymomas in association with tumor location, histological subtype and grade. J Neurooncol 2010; 97 (3) 353-364
  • 19 Kalamarides M, Acosta MT, Babovic-Vuksanovic D , et al. Neurofibromatosis 2011: a report of the Children's Tumor Foundation annual meeting. Acta Neuropathol 2012; 123 (3) 369-380
  • 20 Gatta G, Botta L, Rossi S , et al; EUROCARE Working Group. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5—a population-based study. Lancet Oncol 2014; 15 (1) 35-47
  • 21 Goussia AC, Bruner JM, Kyritsis AP, Agnantis NJ, Fuller GN. Cytogenetic and molecular genetic abnormalities in primitive neuroectodermal tumors of the central nervous system. Anticancer Res 2000; 20 (1A) 65-73
  • 22 Pan E, Pellarin M, Holmes E , et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 2005; 11 (13) 4733-4740
  • 23 Onvani S, Etame AB, Smith CA, Rutka JT. Genetics of medulloblastoma: clues for novel therapies. Expert Rev Neurother 2010; 10 (5) 811-823
  • 24 Northcott PA, Korshunov A, Witt H , et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29 (11) 1408-1414
  • 25 Kool M, Korshunov A, Remke M , et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012; 123 (4) 473-484
  • 26 Northcott PA, Jones DT, Kool M , et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012; 12 (12) 818-834
  • 27 Northcott PA, Dubuc AM, Pfister S, Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother 2012; 12 (7) 871-884
  • 28 Remke M, Ramaswamy V, Taylor MD. Medulloblastoma molecular dissection: the way toward targeted therapy. Curr Opin Oncol 2013; 25 (6) 674-681
  • 29 Shih DJH, Northcott PA, Remke M , et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 2014; 32 (9) 886-896
  • 30 Gottardo NG, Hansford JR, McGlade JP , et al. Medulloblastoma Down Under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group. Acta Neuropathol 2014; 127 (2) 189-201
  • 31 Rusert JM, Wu X, Eberhart CG, Taylor MD, Wechsler-Reya RJ. SnapShot: Medulloblastoma. Cancer Cell 2014; 26 (6) 940-940.e1
  • 32 Ramaswamy V, Remke M, Bouffet E , et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 2016; 131 (6) 821-831
  • 33 Coluccia D, Figuereido C, Isik S, Smith C, Rutka JT. Medulloblastoma: Tumor biology and relevance to treatment and prognosis paradigm. Curr Neurol Neurosci Rep 2016; 16 (5) 43
  • 34 Martinez-Barbera JP. Molecular and cellular pathogenesis of adamantinomatous craniopharyngioma. Neuropathol Appl Neurobiol 2015; 41 (6) 721-732
  • 35 Visser J, Hukin J, Sargent M, Steinbok P, Goddard K, Fryer C. Late mortality in pediatric patients with craniopharyngioma. J Neurooncol 2010; 100 (1) 105-111