Synthesis 2018; 50(15): 2897-2907
DOI: 10.1055/s-0036-1592006
special topic
© Georg Thieme Verlag Stuttgart · New York

Methylene Blue-Catalyzed Oxidative Cleavage of N-Carbonylated Indoles

Kui Wu
a  Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States   Email: twang3@albany.edu
,
Cheng Fang
b  Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States   Email: pengliu@pitt.edu
c  Computational Modeling & Simulation Program, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
,
Sarbjeet Kaur
a  Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States   Email: twang3@albany.edu
,
Peng Liu*
b  Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States   Email: pengliu@pitt.edu
,
a  Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States   Email: twang3@albany.edu
› Author Affiliations
T.W. is grateful to the University at Albany, State University of New York, for financial support. P. L. thanks the National Science Foundation (CHE-1654122) for financial support.
Further Information

Publication History

Received: 27 January 2018

Accepted after revision: 09 April 2018

Publication Date:
08 May 2018 (eFirst)

Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

The development of a visible-light-mediated oxidative cleavage of electron-deficient indoles is reported. Methylene blue serves as an effective catalyst and the transformation shows a broad substrate scope. A variety of functional groups are well accommodated in the mild reaction conditions. The photo-mediated single electron transfer and oxidative cleavage mechanisms were investigated via density functional theory and Marcus theory calculations.

Supporting Information

 
  • References

  • 1 Bugg TD. H. Winfield CJ. Nat. Prod. Rep. 1998; 15: 513
    • 2a Knox WE. Mehler AH. J. Biol. Chem. 1950; 187: 419
    • 2b Knox WE. Mehler AH. J. Biol. Chem. 1950; 187: 431
  • 3 Witkop B. Patrick JP. Rosenblum M. J. Am. Chem. Soc. 1951; 73: 2641
    • 4a Mentel M. Breinbauer R. Curr. Org. Chem. 2007; 11: 159
    • 4b Kunapuli SP. Khan NU. Divakar NG. Vaidyanathan CS. J. Indian Inst. Sci. 1981; 63: 167
  • 5 Winterfeldt E. Liebigs Ann. Chem. 1971; 745: 23
    • 6a Liu S. Scotti JS. Kozmin SA. J. Org. Chem. 2013; 78: 8645
    • 6b Lu Z. Yang M. Chen P. Xiong X. Li A. Angew. Chem. Int. Ed. 2014; 53: 13840
    • 6c Vasudevan N. Kashinath K. Reddy DS. Org. Lett. 2014; 16: 6148
    • 6d Lam HY. Zhang Y. Liu H. Xu J. Wong CT. Xu C. Li X. J. Am. Chem. Soc. 2013; 135: 6272
    • 6e Yang Y. Bai Y. Sun S. Dai M. Org. Lett. 2014; 16: 6216
    • 6f Vasudevan N. Jachak GR. Reddy DS. Eur. J. Org. Chem. 2015; 7433
    • 6g Zhang X. Sui Z. Jiang W. J. Org. Chem. 2003; 68: 4523
    • 6h Pin F. Comesse S. Daich A. Tetrahedron 2011; 67: 5564
    • 6i Shankaraiah N. Santos LS. Tetrahedron Lett. 2009; 50: 520
    • 7a Schaap AP. Zaklika KA. In Singlet Oxygen . Wasserman HH. Murray RW. Academic Press; New York: 1979: 174-243
    • 7b Sundberg RJ. Chemistry of Indoles . Academic Press; New York: 1970
    • 7c Saito I. Imuta M. Mataugo S. Yamamoto H. Matauura T. Synthesis 1976; 265
    • 7d Zhang X. Foote CS. Khan SI. J. Org. Chem. 1993; 58: 47
    • 7e Zhang X. Foote CS. J. Org. Chem. 1993; 58: 5524

      For recent reviews, see:
    • 8a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 8b Hopkinson MN. Sahoo B. Li JL. Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 8c Kärkäs MD. Porco JA. Jr. Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 8d Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 8e Yoon TP. ACS Catal. 2013; 3: 895
    • 8f Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
    • 8g Fukuzumi S. Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 8h Hari DP. König B. Chem. Commun. 2014; 50: 6688
    • 8i Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8j Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 9a Zhang C. Li S. Bures F. Lee R. Ye X. Jiang Z. ACS Catal. 2016; 6: 6853
    • 9b Ji X. Li D. Wang Z. Tan M. Huang H. Deng G. Eur. J. Org. Chem. 2017; 6652
    • 10a Zhao G. Kaur S. Wang T. Org. Lett. 2017; 19: 3291
    • 10b Wu K. Du Y. Wang T. Org. Lett. 2017; 19: 5669
    • 11a Mitscher LA. Chem. Rev. 2005; 105: 559
    • 11b Bisacchi GS. J. Med. Chem. 2015; 58: 4874
    • 11c Huse H. Whiteley M. Chem. Rev. 2011; 111: 152
  • 12 Davis PB. Yasothan U. Kirkpatrick P. Nat. Rev. Drug Discov. 2012; 11: 349
    • 13a Haddad N. Tan J. Farina V. J. Org. Chem. 2006; 71: 5031
    • 13b Abe H. Kawada M. Inoue H. Ohba S. Nomoto A. Watanabe T. Shibasaki M. Org. Lett. 2013; 15: 2124
    • 13c Jadulco RC. Pond CD. Van Wagoner RM. Koch M. Gideon OG. Matainaho TK. Piskaut P. Barrows LR. J. Nat. Prod. 2014; 77: 183
    • 13d Baraldi PG. Saponaro G. Moorman AR. Romagnoli R. Preti D. Baraldi S. Ruggiero E. Varani K. Targa M. Vincenzi F. Borea PA. Tabrizi MA. J. Med. Chem. 2012; 55: 6608
    • 13e Hiltensperger G. Jones NG. Niedermeier S. Stich A. Kaiser M. Jung J. Puhl S. Damme A. Braunschweig H. Meinel L. J. Med. Chem. 2012; 55: 2538
    • 13f Ma L. Seager MA. Wittmann M. Jacobson M. Bickel D. Burno M. Jones K. Graufelds VK. Xu G. Pearson M. Proc. Natl. Acad. Sci. U S A 2009; 106: 15950
    • 13g Lucero Bd A. Gomes CR. B. Frugulhetti IC. de P. P. Faro LV. Alvarenga L. De Souza MC. B. De Souza TM. Ferreira VF. Bioorg. Med. Chem. Lett. 2006; 16: 1010
    • 13h Advani RH. Hurwitz HI. Gordon MS. Ebbinghaus SW. Mendelson DS. Wakelee HA. Hoch U. Silverman JA. Havrilla NA. Berman CJ. Clin. Cancer Res. 2010; 16: 2167
    • 13i Anquetin G. Rouquayrol M. Mahmoudi N. Santillana-Hayat M. Gozalbes R. Greiner J. Farhati K. Derouin F. Guedj R. Vierling P. Bioorg. Med. Chem. Lett. 2004; 14: 2773
    • 13j Mugnaini C. Pasquini S. Corelli F. Curr. Med. Chem. 2009; 16: 1746
    • 13k Mistry SN. Valant C. Sexton PM. Capuano B. Christopoulos A. Scammells PJ. J. Med. Chem. 2013; 56: 5151 ; and references cited therein
  • 14 Thatipally S. Dammalapati VL. N. R. Gorantla SR. Chava S. Patent WO 2014125506 A2, 2014
  • 15 Rajeev R. Sunoj RB. J. Org. Chem. 2012; 77: 2474
    • 16a Yamaguchi Y. Fueno T. Saito I. Matsuura T. Houk KN. Tetrahedron Lett. 1981; 22: 749
    • 16b Singleton DA. Hang C. Szymanski MJ. Meyer MP. Leach AG. Kuwata KT. Chen JS. Greer A. Foote CS. Houk KN. J. Am. Chem. Soc. 2003; 125: 1319
    • 16c Leach AG. Houk KN. Foote CS. J. Org. Chem. 2008; 73: 8511
  • 17 Wilsey S. Bernardi F. Olivucci M. Robb MA. Murphy S. Adam W. J. Phys. Chem. A 1999; 103: 1669