Synthesis 2018; 50(17): 3445-3459
DOI: 10.1055/s-0036-1592005
paper
© Georg Thieme Verlag Stuttgart · New York

Proline-Glycine Dipeptidic Derivatives of Chiral Phosphoramides as Organocatalysts for the Enantiodivergent Aldol Reaction of Aryl Aldehydes and Isatins with Cyclohexanone in the Presence of Water

Carlos Cruz-Hernández
a  Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico
,
Perla E. Hernández-González
a  Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico
,
a  Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, 07360 Ciudad de México, Mexico
b  El Colegio Nacional, Luis González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico   eMail: juaristi@relaq.mx   eMail: ejuarist@cinvestav.mx
› Institutsangaben
This work was financially supported by CONACYT (Consejo Nacional de Ciencia y Tecnología) Mexico via grant 324029.
Weitere Informationen

Publikationsverlauf

Received: 05. März 2018

Accepted after revision: 26. März 2018

Publikationsdatum:
29. Mai 2018 (online)

Abstract

The synthesis of several novel organocatalysts derived from (R)- and (S)-proline-glycine dipeptides and incorporating a chiral phosphoramide fragment was accomplished. These chiral compounds catalyze the enantioselective aldol addition reaction of cyclohexanone to prochiral aryl aldehydes and isatins in the presence of water. These chiral organocatalysts represent some of the few proline-derived compounds capable to catalyze aldol-type addition of cyclohexanone to isatins, a C–C bond forming transformation for which chiral primary amines are usually more successful. Additionally, these phosphoramide-containing catalysts afforded excellent results in the addition of cyclohexanone to aryl aldehydes, as anticipated by the presence of the proline moiety. The present report includes a detailed evaluation of the new multifunctional catalysts that are able to afford either enantiomer of the chiral product by adequate selection of the configuration of the proline residue.

Supporting Information

 
  • References


    • For some pioneering work, see:
    • 1a Hajos ZG. Parrish DR. J. Org. Chem. 1974; 39: 1615
    • 1b Eder U. Sauer GR. Wiechert R. Angew. Chem., Int. Ed. Engl. 1971; 10: 496
    • 1c Denmark SE. Winter SB. D. Su X. Wong K.-T. J. Am. Chem. Soc. 1996; 118: 7404
    • 1d Denmark SE. Wong K.-T. Stavenger RA. J. Am. Chem. Soc. 1997; 119: 2333
    • 1e Denmark SE. Stavenger RA. J. Org. Chem. 1998; 63: 9524
    • 1f Sigman MS. Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 1g Denmark SE. Stavenger RA. Wong K.-T. Su X. J. Am. Chem. Soc. 1999; 121: 4982

    • See also:
    • 1h Dalko PI. Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 2a List B. Lerner RA. Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 2b Ahrendt KA. Borths CJ. MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 3a List B. Tetrahedron 2002; 58: 5573
    • 3b Notz W. Tanaka F. Barbas CF. III. Acc. Chem. Res. 2004; 37: 580
    • 3c Seayad J. List B. Org. Biomol. Chem. 2005; 3: 719
    • 3d Enders D. Grondal C. Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 40: 1570
    • 3e MacMillan DW. C. Nature 2008; 455: 304
    • 3f Dondoni A. Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 3g Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 3h Bertelsen S. Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
    • 3i Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114:  2390
    • 3j Wang H. Lu H. Xu P.-F. Acc. Chem. Res. 2015; 48: 1832
    • 4a Chen X.-H. Yu J. Gong L.-Z. Chem. Commun. 2010; 46: 6437
    • 4b Trost BM. Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 4c Bisai V. Bisai A. Singh VK. Tetrahedron 2012; 68: 4541
    • 4d Guillena G. In Modern Methods in Stereoselective Aldol Reactions . Mahrwald R. Wiley-VCH; Weinheim: 2013: 155
    • 4e Obregón-Zúñiga A. Milán M. Juaristi E. Org. Lett. 2017; 19: 1108
    • 5a Bahmanyar S. Houk KN. J. Am. Chem. Soc. 2001; 123: 12911
    • 5b Bahmanyar S. Houk KN. Martin HJ. List B. J. Am. Chem. Soc. 2003; 125: 2475
    • 5c Allemann C. Gordillo R. Clemente FR. Cheong PH-Y. Houk KN. Acc. Chem. Res. 2004; 37: 558
    • 5d Cheong PH-Y. Houk KN. Synthesis 2005; 1533

    • See also:
    • 5e Sunoj RB. WIREs Comp. Mol. Sci. 2011; 1: 920

      See, for example:
    • 6a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 6b Yu X. Wang W. Chem. Asian J. 2008; 3: 516
    • 6c Sohtome Y. Nagasawa K. Synlett 2010; 1
    • 7a Tang Z. Jiang F. Yu L-T. Cui X. Gong L-Z. Mi A-Q. Jiang Y-Z. Wu Y-D. J. Am. Chem. Soc. 2003; 125: 5262

    • See also:
    • 7b Tang Z. Yang Z-H. Chen X-H. Cun L-F. Mi A-Q. Jiang Y-Z. Gong L-Z. J. Am. Chem. Soc. 2005; 127: 9285
    • 7c Raj M. Ginotra SK. Singh VK. Org. Lett. 2006; 8: 4097
    • 7d He L. Jiang J. Tang Z. Cui X. Mi A-Q. Jiang Y-Z. Gong L-Z. Tetrahedron: Asymmetry 2007; 18: 265
    • 7e Gandhi S. Singh VK. J. Org. Chem. 2008; 73: 9411
    • 7f Chen F. Huang S. Zhang H. Liu F. Peng Y. Tetrahedron 2008; 64: 9585
    • 7g Vishnumaya MR. Singh VK. J. Org. Chem. 2009; 74: 4289
    • 7h Wang B. Chen G-H. Liu L-Y. Chang W-X. Li J. Adv. Synth. Catal. 2009; 351: 2441
    • 7i Tsandi E. Kokotos CG. Kousidou S. Ragoussis V. Kokotos G. Tetrahedron 2009; 65: 1444
    • 7j Fotaras S. Kokotos CG. Tsandi E. Kokotos G. Eur. J. Org. Chem. 2011; 1310
    • 7k Fotaras S. Kokotos CG. Kokotos G. Org. Biomol. Chem. 2012; 10: 5613
    • 7l Revelou P. Kokotos CG. Moutevelis-Minakakis P. Tetrahedron 2012; 68: 8732
    • 7m Psarra A. Kokotos CG. Moutevelis-Minakakis P. Tetrahedron 2014; 70: 608
    • 8a Mase N. Nakai Y. Ohara N. Yoda H. Takabe K. Tanaka F. Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 734

    • See also:
    • 8b Hayashi Y. Sumiya T. Takahashi J. Gotoh H. Urushima T. Shoji M. Angew. Chem. Int. Ed. 2006; 45: 958
    • 8c Hayashi Y. Aratake S. Okano S. Takahashi J. Sumiya T. Shoji M. Angew. Chem. Int. Ed. 2006; 45: 5527
    • 8d Jiang Z. Liang Z. Wu X. Lu Y. Chem. Commun. 2006; 2801
    • 8e Wu Y. Zhang Y. Yu M. Zhao G. Wang S. Org. Lett. 2006; 8: 4417
    • 8f Guillena G. Hita MC. Nájera C. Tetrahedron: Asymmetry 2006; 17: 1493
    • 8g Maya U. Raj M. Singh VK. Org. Lett. 2007; 9: 2593
    • 8h Hayashi Y. Aratake S. Itoh T. Okano T. Sumiya T. Shoji M. Chem. Commun. 2007; 957
    • 8i Aratake S. Itoh T. Okano T. Nagae N. Sumiya T. Shoji M. Hayashi Y. Chem. Eur. J. 2007; 13: 10246
    • 8j Guizzetti S. Benaglia M. Raimondi L. Celentano G. Org. Lett. 2007; 9: 1247
    • 8k Hernández JG. Juaristi E. Chem. Commun. 2012; 48: 5396
    • 8l Zhao Q. Lam Y-H. Kheirabadi M. Xu C. Houk KN. Schafmeister CE. J. Org. Chem. 2012; 77: 4784
    • 8m Giacalone F. Gruttadauria M. In Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications . Dalko PI. Wiley-VCH; Weinheim: 2013. 1st ed., Vol. 2 673
    • 8n Obregón-Zuñiga A. Juaristi E. Tetrahedron 2017; 73: 5373
  • 9 Cruz-Hernández C. Hernández-González PE. Juaristi E. Synthesis 2018; 50: 1827

    • A related proline-derived organocatalyst that incorporates a phosphoryl group was reported a few years ago, see:
    • 10a Liu X-W. Le TN. Lu Y. Xiao Y. Ma J. Li X. Org. Biomol. Chem. 2008; 6: 3997
    • 10b Yu G. Ge Z-M. Cheng T-M. Li R-T. Chin. J. Chem. 2008; 26: 911

      See, for example:
    • 11a Jarvo ER. Miller SJ. Tetrahedron 2002; 58: 2481
    • 11b Kofoed J. Nielsen J. Raymond J-L. Bioorg. Med. Chem. Lett. 2003; 13: 2445
    • 11c Shi L-X. Sun Q. Ge Z-M. Zhu Y-Q. Cheng T-M. Li R-T. Synlett 2004; 2215
    • 11d Luppi G. Cozzi PG. Monari M. Kaptein B. Broxterman QB. Tomasini C. J. Org. Chem. 2005; 70: 7418
    • 11e Lei M. Shi L. Li G. Chen S. Fang W. Ge Z. Cheng T. Li R. Tetrahedron 2007; 63: 7892
    • 11f D’Elia V. Zwicknagl H. Reiser O. J. Org. Chem. 2008; 73: 3262
    • 11g Nisco M. Pedatella S. Ullah H. Zaidi JH. Naviglio D. Özdamar Ö. Caputo R. J. Org. Chem. 2009; 74: 9562
    • 11h Chen Y-H. Sung P-H. Sung K. Amino Acids 2010; 38: 839
    • 11i Yolacan C. Mavis ME. Aydogan F. Tetrahedron 2014; 70: 3707
    • 11j Bisticha A. Triandafillidi I. Kokotos CG. Tetrahedron: Asymmetry 2015; 26: 102
    • 11k Triandafillidi I. Bisticha A. Voutyritsa E. Galiatsatou G. Kokotos CG. Tetrahedron 2015; 71: 932
    • 11l Milbeo P. Maurent K. Moulat L. Lebrun A. Didierjean C. Aubert E. Martinez J. Calmès M. Tetrahedron 2016; 72: 1706
    • 11m Schnitzer T. Wennemers H. J. Am. Chem. Soc. 2017; 139: 15356
    • 12a Hernández JG. Juaristi E. J. Org. Chem. 2011; 76: 1464
    • 12b Hernández JG. Juaristi E. Tetrahedron 2011; 67: 6953
    • 12c Hernández JG. García-López V. Juaristi E. Tetrahedron 2012; 68: 92
    • 12d Machuca E. Rojas Y. Juaristi E. Asian J. Org. Chem. 2015; 4: 46
    • 12e Machuca E. Juaristi E. Tetrahedron Lett. 2015; 56: 1144
    • 13a Breslow R. Acc. Chem. Res. 1991; 24: 159
    • 13b Blokzijl W. Engberts JB. F. N. Angew. Chem., Int. Ed. Engl. 1993; 32: 1545
    • 13c Butler RN. Coyne AG. Chem. Rev. 2010; 110: 6302
    • 13d Guo W. Liu X. Liu Y. Li C. ACS Catal. 2018; 8: 328
    • 13e Kitanosono T. Masuda K. Xu P. Kobayashi S. Chem. Rev. 2018; 118: 679
  • 14 Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471

    • For the synthesis of related phosphoramide derivatives, see:
    • 15a Kattuboina A. Li G. Tetrahedron Lett. 2008; 49: 1573
    • 15b Han J. Ai T. Li G. Synthesis 2008; 2519
    • 15c Kaur P. Nguyen T. Li G. Eur. J. Org. Chem. 2009; 912
    • 15d Seifert CW. Pindi S. Li G. J. Org. Chem. 2015; 80: 447
    • 15e An G. Seifert C. Li G. Org. Biomol. Chem. 2015; 13: 1600
    • 15f Qiao S. Pindi S. Spigener PT. Jiang B. Li G. Tetrahedron Lett. 2016; 57: 619
    • 15g Zhang H. Yang B. Yang Z. Lu H. Li G. J. Org. Chem. 2016; 81: 7654
    • 15h Qiao S. Wilcox CB. Unruh DK. Jiang B. Li G. J. Org. Chem. 2017; 82: 2992
    • 15i Qiao S. Wu J. Mo J. Spigener PT. Zhao BN. Jiang B. Li G. Synlett 2017; 28: 2483
    • 15j Qiao S. Mo J. Wilcox CB. Jiang B. Li G. Org. Biomol. Chem. 2017; 15: 1718
  • 16 Wissman H. Kleiner H.-J. Angew. Chem., Int. Ed. Engl. 1980; 19: 133
    • 17a Crystal data for (1S,2S,1′R,2′R,2′′S)-15: C31H38N4O2P, Trigonal, R3; a = 38.985(2) Å, b = 38.985 Å, c = 10.8582(5) Å; α = 90°, β = 90°, γ = 120°; V = 14291.7(10) Å3; z = 20, z′ = 2.22; R1 = 6.55%; Rint = 7.75%.
    • 17b CCDC 1827531 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 18a Desiraju GR. Kashino S. Coombs MM. Glusker JP. Acta Crystallogr., Sec. B 1993; 49: 880
    • 18b Desiraju GR. Acc. Chem. Res. 1996; 29: 441
    • 18c Jeffrey GA. An Introduction to Hydrogen Bonding . Oxford University Press; Oxford: 1997: 12
    • 19a Robak MT. Herbage MA. Ellman JA. Tetrahedron 2011; 67: 4412
    • 19b Wan W. Gao W. Ma G. Ma L. Wang F. Wang J. Jiang H. Zhu S. Hao J. RSC Adv. 2014; 4: 26563
    • 19c Reyes-Rangel G. Vargas-Caporali J. Juaristi E. Tetrahedron 2017; 73: 4707
    • 20a Pajouhesh H. Parson R. Popp FD. J. Pharm. Sci. 1983; 72: 318
    • 20b Codding PW. Lee TA. Richardson JF. J. Med. Chem. 1984; 27: 649
    • 20c Kamano Y. Zhang H.-P. Ichihara Y. Kizu H. Komiyama K. Pettit GR. Tetrahedron Lett. 1995; 36: 2783
    • 20d Khono J. Koguchi Y. Nishio M. Nakao K. Juroda M. Shimizu R. Ohnuki T. Komatsubara S. J. Org. Chem. 2000; 65: 990
    • 20e Tang Y.-Q. Sattler I. Thiericke R. Grabley S. Feng X.-Z. Eur. J. Org. Chem. 2001; 261
    • 20f Tokunaga T. Home WE. Nagamine J. Kawamura T. Taiji M. Nagata R. Bioorg. Med. Chem. Lett. 2005; 15: 1789
    • 20g Luppi G. Monari M. Corrêa RJ. Violante FA. Pinto AC. Kaptein B. Broxterman QB. Garden SJ. Tomasini C. Tetrahedron 2006; 62: 12017
    • 20h Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 20i Sultan C. Mikhail C. Shifeng L. Jianyu S. Vandna R. Ray C. Wendy Y. Rainbow K. Jianmin F. Jay CA. Bioorg. Med. Chem. Lett. 2011; 21: 3676
    • 20j Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
    • 20k Kumar A. Chimni SS. RSC Adv. 2012; 2: 9748
    • 20l Parvathaneni SP. Pamanji R. Janapala VR. Uppalapati SK. Balasubramanian S. Mandapati MR. Eur. J. Med. Chem. 2014; 84: 155
    • 20m Reddy UV. S. Chennapuram M. Seki K. Seki C. Anusha B. Kwon E. Okuyama Y. Uwai K. Tokiwa M. Takeshita M. Nakano H. Eur. J. Org. Chem. 2017; 3874
    • 21a Ricci A. Bernardi L. Gioia C. Verucci S. Robitzer M. Quignard F. Chem. Commun. 2010; 46: 6268
    • 21b Raj M. Veerasamy N. Singh VK. Tetrahedron Lett. 2010; 51: 2157
    • 21c Shen C. Shen F. Xia H. Zhang P. Chen X. Tetrahedron: Asymmetry 2011; 22: 708
    • 21d Guo Q. Zhao JC.-G. Tetrahedron Lett. 2012; 53: 1768
    • 21e Liu Y. Gao P. Wang J. Sun Q. Ge Z. Li R. Synlett 2012; 23: 1031
    • 21f Kumar A. Chimni SS. Tetrahedron 2013; 69: 5197
    • 21g Tanimura Y. Yasunaga K. Ishimaru K. Eur. J. Org. Chem. 2013; 6535
    • 21h Zhao H. Meng W. Yang Z. Tian T. Sheng Z. Li H. Song X. Zhang Y. Yang S. Li B. Chin. J. Chem. 2014; 32: 417
    • 21i Wang J. Liu Q. Sun Y. Luo Y. Yang H. Chirality 2015; 27: 314
    • 21j Kimura J. Reddy UV. S. Kohari Y. Seki C. Mawatari Y. Uwai K. Okuyama Y. Kwon E. Tokiwa M. Takeshita M. Iwasa T. Nakano H. Eur. J. Org. Chem. 2016; 3748
    • 21k Mohite PH. Drabina P. Bureš F. Synthesis 2017; 49: 1613
    • 22a Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 22b Terada M. Synthesis 2010; 1929
    • 22c Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 22d Akiyama T. Chem. Rev. 2007; 107: 5744
  • 23 Perrin DD. Armarego WL. F. Purification of Laboratory Chemicals . Pergamon Press; London: 1988