Synthesis 2018; 50(09): 1796-1814
DOI: 10.1055/s-0036-1591957
feature
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalysed Construction of All-Carbon Quaternary Centres with Propargylic Electrophiles: Challenges in the Simultaneous Control of Regio-, Chemo- and Enantioselectivity

Miles Kenny
a  Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK   Email: v.franckevicius@lancaster.ac.uk
,
Sybrin P. Schröder
b  Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
,
Nicholas J. Taylor
b  Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
,
Paula Jackson
b  Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
,
Daniel J. Kitson
a  Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK   Email: v.franckevicius@lancaster.ac.uk
,
a  Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK   Email: v.franckevicius@lancaster.ac.uk
› Author Affiliations
We gratefully acknowledge the Royal Society (RG150189, V.F.), the University of York (N.J.T. and V.F.), Lancaster University (M.K. and V.F.), the EU (Erasmus Exchange Programme to S.P.S.), and the Royal Society of Chemistry (Undergraduate Research Bursaries to P.J. and D.J.K.) for financial support.

Further Information

Publication History

Received: 15 January 2018

Accepted after revision: 20 February 2018

Publication Date:
27 March 2018 (online)


Abstract

This article describes the palladium-catalysed three-component coupling of 1,3-dicarbonyl compounds with nucleophiles and propargylic electrophiles for the generation of quaternary all-carbon centres in a single step, which necessitates the simultaneous control of regio-, chemo- and enantioselectivity. The use of propargyl enol carbonates, the source of two of the components, was found to be essential in maintaining high levels of regiocontrol and chemoselectivity, whereas a careful analysis of pK a trends of O-, C- and N-nucleophiles as the other coupling partner indicates that the highest levels of selectivity are likely to be obtained with relatively acidic species, such as phenols, 1,3-dicarbonyl compounds and aromatic N-heterocycles. Finally, studies towards the development of the catalytic enantioselective construction of quaternary all-carbon centres by means of alkenylation and allylic alkylation are disclosed.

Supporting Information

 
  • References

  • 1 Hann MM. Med. Chem. Commun. 2011; 2: 349
  • 2 Ritchie TJ. Macdonald SJ. F. Young RJ. Pickett SD. Drug Discovery Today 2011; 16: 164
  • 3 Lovering F. Bikker J. Humblet C. J. Med. Chem. 2009; 52: 6752
  • 4 Lovering F. Med. Chem. Commun. 2013; 4: 515
  • 5 Hall RJ. Mortenson PN. Murray CW. Prog. Biophys. Mol. Biol. 2014; 116: 82
    • 6a Douglas CJ. Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5363
    • 6b Trost BM. Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 6c Weaver JD. Recio AIII. Grenning AJ. Tunge JA. Chem. Rev. 2011; 111: 1846
    • 6d Liu YY. Han SJ. Liu WB. Stoltz BM. Acc. Chem. Res. 2015; 48: 740
    • 7a Ogoshi S. Tsutsumi K. Kurosawa H. J. Organomet. Chem. 1995; 493: C19
    • 7b Baize MW. Blosser PW. Plantevin V. Schimpff DG. Gallucci JC. Wojcicki A. Organometallics 1996; 15: 164
    • 7c Tsutsumi K. Ogoshi S. Nishiguchi S. Kurosawa H. J. Am. Chem. Soc. 1998; 120: 1938
    • 7d Tsutsumi K. Kawase T. Kakiuchi K. Ogoshi S. Okada Y. Kurosawa H. Bull. Chem. Soc. Jpn. 1999; 72: 2687
    • 8a Tsuji J. Mandai T. Angew. Chem., Int. Ed. Engl. 1995; 34: 2589
    • 8b Ma SM. Eur. J. Org. Chem. 2004; 1175
    • 8c Behenna DC. Mohr JT. Sherden NH. Marinescu SC. Harned AM. Tani K. Seto M. Ma S. Novak Z. Krout MR. McFadden RM. Roizen JL. Enquist JA. White DE. Levine SR. Petrova KV. Iwashita A. Virgil SC. Stoltz BM. Chem. Eur. J. 2011; 17: 14199
    • 8d Daniels DS. B. Jones AS. Thompson AL. Paton RS. Anderson EA. Angew. Chem. Int. Ed. 2014; 53: 1915
    • 9a Guo L.-N. Duan X.-H. Liang Y.-M. Acc. Chem. Res. 2011; 44: 111
    • 9b Yoshida M. Chem. Pharm. Bull. 2012; 60: 285
    • 9c Yoshida M. Heterocycles 2013; 87: 1835
    • 9d Hu X.-H. Liu Z.-T. Shao L. Hu X.-P. Synthesis 2015; 47: 913
    • 9e Franckevičius V. Tetrahedron Lett. 2016; 57: 3586
    • 10a Tsuji J. Watanabe H. Minami I. Shimizu I. J. Am. Chem. Soc. 1985; 107: 2196
    • 10b Geng L. Lu X. Tetrahedron Lett. 1990; 31: 111
    • 10c Geng LF. Lu XY. J. Chem. Soc., Perkin Trans. 1 1992; 17
    • 10d Labrosse JR. Lhoste P. Sinou D. J. Org. Chem. 2001; 66: 6634
    • 11a Yoshida M. Fujita M. Ihara M. Org. Lett. 2003; 5: 3325
    • 11b Casey CP. Nash JR. Yi CS. Selmeczy AD. Chung S. Powell DR. Hayashi RK. J. Am. Chem. Soc. 1998; 120: 722
    • 11c Horino Y. Homura N. Inoue K. Yoshikawa S. Adv. Synth. Catal. 2012; 354: 828
  • 12 Nishioka N. Koizumi T. Tetrahedron Lett. 2011; 52: 3662
    • 13a Duan X.-H. Guo L.-N. Bi H.-P. Liu X.-Y. Liang Y.-M. Org. Lett. 2006; 8: 5777
    • 13b Guo L.-N. Duan X.-H. Bi H.-P. Liu X.-Y. Liang Y.-M. J. Org. Chem. 2007; 72: 1538
    • 13c Bi H.-P. Guo L.-N. Gou F.-R. Duan X.-H. Liu X.-Y. Liang Y.-M. J. Org. Chem. 2008; 73: 4713
    • 13d Yoshida M. Morishita Y. Fujita M. Ihara M. Tetrahedron Lett. 2004; 45: 1861
    • 13e Yoshida M. Morishita Y. Fujita M. Ihara M. Tetrahedron 2005; 61: 4381
    • 13f Nemoto T. Zhao ZD. Yokosaka T. Suzuki Y. Wu R. Hamada Y. Angew. Chem. Int. Ed. 2013; 52: 2217
    • 13g Iwata A. Inuki S. Oishi S. Fujii N. Ohno H. Chem. Commun. 2014; 50: 298
    • 14a Yoshida M. Higuchi M. Shishido K. Tetrahedron Lett. 2008; 49: 1678
    • 14b Yoshida M. Higuchi M. Shishido K. Tetrahedron 2010; 66: 2675
    • 14c Yoshida M. Sugimura C. Shishido K. Org. Lett. 2011; 13: 3482
    • 14d Montgomery TD. Nibbs AE. Zhu Y. Rawal VH. Org. Lett. 2014; 16: 3480
  • 15 Schröder SP. Taylor NJ. Jackson P. Franckevičius V. Org. Lett. 2013; 15: 3778
    • 16a Nibbs AE. Montgomery TD. Zhu Y. Rawal VH. J. Org. Chem. 2015; 80: 4928
    • 16b Gao R.-D. Liu C. Dai L.-X. Zhang W. You S.-L. Org. Lett. 2014; 16: 3919
    • 17a Labrosse JR. Lhoste P. Sinou D. Org. Lett. 2000; 2: 527
    • 17b Damez C. Labrosse JR. Lhoste P. Sinou D. Tetrahedron Lett. 2003; 44: 557
    • 17c Dominczak N. Damez C. Rhers B. Labrosse J.-R. Lhoste P. Kryczka B. Sinou D. Tetrahedron 2005; 61: 2589
    • 17d Yoshida M. Higuchi M. Shishido K. Org. Lett. 2009; 11: 4752
    • 17e Labrosse J.-R. Lhoste P. Sinou D. Eur. J. Org. Chem. 2002; 1966
  • 18 Zhou Y. Zhu FL. Liu ZT. Zhou XM. Hu XP. Org. Lett. 2016; 18: 2734
  • 19 Bordwell FG. Acc. Chem. Res. 1988; 21: 456
  • 20 Bordwell FG. Branca JC. Hughes DL. Olmstead WN. J. Org. Chem. 1980; 45: 3305
  • 21 Kenny M. Christensen J. Coles SJ. Franckevičius V. Org. Lett. 2015; 17: 3926
  • 22 Kenny M. Kitson DJ. Franckevičius V. J. Org. Chem. 2016; 81: 5162
  • 23 Matsuo JI. Kawai H. Ishibashi H. Tetrahedron Lett. 2007; 48: 3155
  • 24 Jiang YW. Wu N. Wu HH. He MY. Synlett 2005; 2731
  • 25 Alper P. Azimioara M. Cow C. Epple R. Lelais G. Mecom J. Mutnick D. Nikulin V. WO 2011/014520, 2011
  • 26 Hemavathi SN. Naveen CR. Rai KM. L. Indian J. Heterocycl. Chem. 2011; 20: 409