Synthesis 2018; 50(18): 3615-3633
DOI: 10.1055/s-0036-1591953
short review
© Georg Thieme Verlag Stuttgart · New York

In Situ ‘Trans-Metal Trapping’: An Efficient Way to Extend the Scope of Aromatic Deprotometalation

Nahida Mokhtari Brikci-Nigassa
a  Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella, BP 1524 El M’Naouer, 31000 Oran, Algeria
b  Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France   Email: [email protected]   Email: [email protected]
,
Ghenia Bentabed-Ababsa
a  Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella, BP 1524 El M’Naouer, 31000 Oran, Algeria
,
William Erb*
b  Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France   Email: [email protected]   Email: [email protected]
,
Florence Mongin*
b  Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France   Email: [email protected]   Email: [email protected]
› Author Affiliations
Université de Rennes 1; Ministère de l’Enseignement supérieur et de la Recherche scientifique Algérien; Centre National de la Recherche Scientifique (PICS SYNAROM)
Further Information

Publication History

Received: 05 February 2018

Accepted: 12 February 2018

Publication Date:
08 March 2018 (online)


Published as part of the Special Section on the Main Group Metal Chemistry Symposium

Abstract

Deprotometalation is an efficient method to functionalize regioselectively aromatic compounds including heterocycles. This short review shows how it is possible to intercept aryllithiums (and other polar arylmetals) as soon as they are formed by in situ ‘trans-metal trapping’. The approach avoids long contact between aryllithiums and sensitive substrates. In addition, it allows less activated substrates to be deprotonated by non-nucleophilic lithium amides. While using chloro­silanes and borates still arouses the interest of chemists, more recently, methods based on zinc, aluminum and gallium have appeared, enabling this chemistry to grow dramatically.

1 Introduction

2 Silicon-Based In Situ Traps

3 Boron-Based In Situ Traps

4 Zinc-Based In Situ Traps

5 Aluminum- and Gallium-Based In Situ Traps

6 Other In Situ Traps

7 Continuous-Flow In Situ ‘Trans-Metal Trapping’

8 Conclusion

 
  • References

  • 2 See for example: Eaton PE. Lee CH. Xiong Y. J. Am. Chem. Soc. 1989; 111: 8016
    • 3a Mulvey RE. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed. 2007; 46: 3802
    • 3b Mulvey RE. Acc. Chem. Res. 2009; 42: 743
    • 3c Haag B. Mosrin M. Ila H. Malakhov V. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 3d Mongin F. Harrison-Marchand A. Chem. Rev. 2013; 113: 7563
    • 3e Mulvey RE. Dalton Trans. 2013; 42: 6676
    • 3f Harford PJ. Peel AJ. Chevallier F. Takita R. Mongin F. Uchiyama M. Wheatley AE. H. Dalton Trans. 2014; 43: 14181
  • 4 Lysén M. Hansen HM. Begtrup M. Kristensen JL. J. Org. Chem. 2006; 71: 2518
  • 5 Benischke AD. Ellwart M. Becker MR. Knochel P. Synthesis 2016; 48: 1101

    • Note that lithium chloride, formed by using in situ traps such as chlorotrimethylsilane and zinc chloride, can also impact the reaction rate. See for example:
    • 6a Lipshutz BH. Wood MR. Lindsley CW. Tetrahedron Lett. 1995; 36: 4385
    • 6b Gupta L. Hoepker AC. Singh KJ. Collum DB. J. Org. Chem. 2009; 74: 2231
    • 6c Hevia E. Mulvey RE. Angew. Chem. Int. Ed. 2011; 50: 6448
    • 6d Liang J. Hoepker AC. Algera RF. Ma Y. Collum DB. J. Am. Chem. Soc. 2015; 137: 6292

      In the framework of this short review, we discarded studies on the lithium–cadmium base ‘(TMP)3CdLi’ in spite of a probably similar behavior, see:
    • 7a Mongin F. Uchiyama M. Curr. Org. Chem. 2011; 15: 2340
    • 7b Armstrong DR. Kennedy AR. Mulvey RE. Parkinson JA. Robertson SD. Chem. Sci. 2012; 3: 2700
  • 8 Marsais F. Laperdrix B. Güngör T. Mallet M. Queguiner G. J. Chem. Res., Synop. 1982; 278
  • 9 Krizan TD. Martin JC. J. Am. Chem. Soc. 1983; 105: 6155
  • 10 Upton CJ. Beak P. J. Org. Chem. 1975; 40: 1094
    • 11a Luliński S. Serwatowski J. J. Org. Chem. 2003; 68: 5384
    • 11b Luliński S. Serwatowski J. J. Org. Chem. 2003; 68: 9384
  • 12 Decouzon M. Ertl P. Exner O. Gal J.-F. Maria P.-C. J. Am. Chem. Soc. 1993; 115: 12071
  • 13 Heiss C. Marzi E. Schlosser M. Eur. J. Org. Chem. 2003; 4625
  • 14 Gilman H. Gorsich RD. J. Am. Chem. Soc. 1956; 78: 2217
  • 15 Erb W. Mongin F. Tetrahedron 2016; 72: 4973
  • 16 Widhalm M. Aichinger C. Mereiter K. Tetrahedron Lett. 2009; 50: 2425
  • 17 Dąbrowski M. Kubicka J. Luliński S. Serwatowski J. Tetrahedron Lett. 2005; 46: 4175
    • 18a Luliński S. Serwatowski J. Zaczek A. Eur. J. Org. Chem. 2006; 5167
    • 18b Mongin F. Chimia 2016; 70: 48
  • 19 Mesgar M. Daugulis O. Org. Lett. 2016; 18: 3910
    • 20a Nguyen T.-H. Chau NT. T. Castanet A.-S. Nguyen KP. P. Mortier J. Org. Lett. 2005; 7: 2445
    • 20b See also: Chau NT. T. Nguyen TH. Castanet A.-S. Nguyen KP. P. Mortier J. Tetrahedron 2008; 64: 10552
  • 21 Michaux J. Bessières B. Einhorn J. Tetrahedron Lett. 2012; 53: 48
  • 22 Black WC. Guay B. Scheuermeyer F. J. Org. Chem. 1997; 62: 758
    • 23a Gribble GW. Saulnier MG. Tetrahedron Lett. 1980; 21: 4137
    • 23b Gribble GW. Saulnier MG. Heterocycles 1993; 35: 151
  • 24 Effenberger F. Daub W. Chem. Ber. 1991; 124: 2119
  • 25 Imahori T. Uchiyama M. Sakamoto T. Kondo Y. Chem. Commun. 2001; 2450
  • 26 Tilly D. Fu J.-m. Zhao B.-p. Alessi M. Castanet A.-S. Snieckus V. Mortier J. Org. Lett. 2010; 12: 68
    • 27a Price DA. Simpkins NS. MacLeod AM. Watt AP. J. Org. Chem. 1994; 59: 1961
    • 27b Ewin RA. MacLeod AM. Price DA. Simpkins NS. Watt AP. J. Chem. Soc., Perkin Trans. 1 1997; 401
  • 28 See also: Schmalz H.-G. Schellhaas K. Tetrahedron Lett. 1995; 36: 5515
  • 29 Price D. Simpkins NS. Tetrahedron Lett. 1995; 36: 6135
  • 30 Mongin F. Curty C. Marzi E. Leroux FR. Schlosser M. ARKIVOC 2015; (iv): 48
  • 31 Caron S. Hawkins JM. J. Org. Chem. 1998; 63: 2054
  • 32 Kristensen J. Lysen M. Vedsø P. Begtrup M. Org. Lett. 2001; 3: 1435
  • 33 Fraser RR. Mansour TS. Savard S. J. Org. Chem. 1985; 50: 3232
  • 34 Iwao M. J. Org. Chem. 1990; 55: 3622
  • 35 Hansen HM. Lysén M. Begtrup M. Kristensen JL. Tetrahedron 2005; 61: 9955
  • 36 Alessi M. Larkin AL. Ogilvie KA. Green LA. Lai S. Lopez S. Snieckus V. J. Org. Chem. 2007; 72: 1588
  • 37 Cederbalk A. Lysén M. Kehler J. Kristensen JL. Tetrahedron 2017; 73: 1576
    • 38a Jaric M. Haag BA. Unsinn A. Karaghiosoff K. Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
    • 38b Jaric M. Haag BA. Manolikakes SM. Knochel P. Org. Lett. 2011; 13: 2306
    • 38c Groll K. Manolikakes SM. Mollat du Jourdin X. Jaric M. Bredihhin A. Karaghiosoff K. Carell T. Knochel P. Angew. Chem. Int. Ed. 2013; 52: 6776
  • 39 Seggio A. Lannou M.-I. Chevallier F. Nobuto D. Uchiyama M. Golhen S. Roisnel T. Mongin F. Chem. Eur. J. 2007; 13: 9982
    • 40a L’Helgoual’ch JM. Seggio A. Chevallier F. Yonehara M. Jeanneau E. Uchiyama M. Mongin F. J. Org. Chem. 2008; 73: 177
    • 40b Snégaroff K. Komagawa S. Chevallier F. Gros PC. Golhen S. Roisnel T. Uchiyama M. Mongin F. Chem. Eur. J. 2010; 16: 8191
    • 40c García-Álvarez P. Mulvey RE. Parkinson JA. Angew. Chem. Int. Ed. 2011; 50: 9668
  • 41 Plé N. Turck A. Couture K. Quéguiner G. J. Org. Chem. 1995; 60: 3781
  • 42 Seggio A. Chevallier F. Vaultier M. Mongin F. J. Org. Chem. 2007; 72: 6602
  • 43 Snégaroff K. Nguyen TT. Marquise N. Halauko YS. Harford PJ. Roisnel T. Matulis VE. Ivashkevich OA. Chevallier F. Wheatley AE. H. Gros PC. Mongin F. Chem. Eur. J. 2011; 17: 13284
  • 44 Ameur Messaoud MY. Bentabed-Ababsa G. Hedidi M. Derdour A. Chevallier F. Halauko YS. Ivashkevich OA. Matulis VE. Picot L. Thiéry V. Roisnel T. Dorcet V. Mongin F. Beilstein J. Org. Chem. 2015; 11: 1475
    • 45a Kadiyala RR. Tilly D. Nagaradja E. Roisnel T. Matulis VE. Ivashkevich OA. Halauko YS. Chevallier F. Gros PC. Mongin F. Chem. Eur. J. 2013; 19: 7944
    • 45b Marquise N. Bretel G. Lassagne F. Chevallier F. Roisnel T. Dorcet V. Halauko YS. Ivashkevich OA. Matulis VE. Gros PC. Mongin F. RSC Adv. 2014; 4: 19602
    • 45c Marquise N. Nguyen TT. Chevallier F. Picot L. Thiery V. Lozach O. Bach S. Ruchaud S. Mongin F. Synlett 2015; 26: 2811
    • 46a Dayaker G. Sreeshailam A. Chevallier F. Roisnel T. Radha Krishna P. Mongin F. Chem. Commun. 2010; 46: 2862
    • 46b Tazi M. Erb W. Halauko YS. Ivashkevich OA. Matulis VE. Roisnel T. Dorcet V. Mongin F. Organometallics 2017; 36: 4770
  • 47 Dayaker G. Tilly D. Chevallier F. Hilmersson G. Gros PC. Mongin F. Eur. J. Org. Chem. 2012; 6051
    • 48a Sreeshailam A. Dayaker G. Ramana DV. Chevallier F. Roisnel T. Komagawa S. Takita R. Uchiyama M. Radha Krishna P. Mongin F. RSC Adv. 2012; 2: 7030
    • 48b Dayaker G. Sreeshailam A. Ramana DV. Chevallier F. Roisnel T. Komagawa S. Takita R. Uchiyama M. Krishna PR. Mongin F. Tetrahedron 2014; 70: 2102
    • 49a Eaton PE. Castaldi G. J. Am. Chem. Soc. 1985; 107: 724
    • 49b Eaton PE. Higuchi H. Millikan R. Tetrahedron Lett. 1987; 28: 1055
  • 50 Eaton PE. Daniels RG. Casucci D. Cunkle GT. Engel P. J. Org. Chem. 1987; 52: 2100
  • 51 Eaton PE. Cunkle GT. Marchioro G. Martin RM. J. Am. Chem. Soc. 1987; 109: 948
  • 52 Dong Z. Clososki GC. Wunderlich SH. Unsinn A. Li J. Knochel P. Chem. Eur. J. 2009; 15: 457
  • 53 Unsinn A. Rohbogner CJ. Knochel P. Adv. Synth. Catal. 2013; 355: 1553
  • 54 Unsinn A. Wunderlich SH. Knochel P. Adv. Synth. Catal. 2013; 355: 989
  • 55 Nagaradja E. Chevallier F. Roisnel T. Dorcet V. Halauko YS. Ivashkevich OA. Matulis VE. Mongin F. Org. Biomol. Chem. 2014; 12: 1475
  • 56 Frischmuth A. Fernández M. Barl NM. Achrainer F. Zipse H. Berionni G. Mayr H. Karaghiosoff K. Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
    • 57a Hedidi M. Erb W. Lassagne F. Halauko YS. Ivashkevich OA. Matulis VE. Roisnel T. Bentabed-Ababsa G. Mongin F. RSC Adv. 2016; 6: 63185
    • 57b Hedidi M. Maillard J. Erb W. Lassagne F. Halauko YS. Ivashkevich OA. Matulis VE. Roisnel T. Dorcet V. Hamze M. Fajloun Z. Baratte B. Ruchaud S. Bach S. Bentabed-Ababsa G. Mongin F. Eur. J. Org. Chem. 2017; 5903
  • 58 Amara R. Bentabed-Ababsa G. Hedidi M. Khoury J. Awad H. Nassar E. Roisnel T. Dorcet V. Chevallier F. Fajloun Z. Mongin F. Synthesis 2017; 49: 4500
  • 59 Eaton PE. Martin RM. J. Org. Chem. 1988; 53: 2728
    • 60a Chevallier F. Halauko YS. Pecceu C. Nassar IF. Dam TU. Roisnel T. Matulis VE. Ivashkevich OA. Mongin F. Org. Biomol. Chem. 2011; 9: 4671
    • 60b Nagaradja E. Bentabed-Ababsa G. Scalabrini M. Chevallier F. Philippot S. Fontanay S. Duval RE. Halauko YS. Ivashkevich OA. Matulis VE. Roisnel T. Mongin F. Bioorg. Med. Chem. 2015; 23: 6355
  • 61 Chevallier F. Blin T. Nagaradja E. Lassagne F. Roisnel T. Halauko YS. Matulis VE. Ivashkevich OA. Mongin F. Org. Biomol. Chem. 2012; 10: 4878
  • 62 Fuentes MA. Kennedy AR. Mulvey RE. Parkinson JA. Rantanen T. Robertson SD. Snieckus V. Chem. Eur. J. 2015; 21: 14812
  • 63 Hedidi M. Bentabed-Ababsa G. Derdour A. Halauko YS. Ivashkevich OA. Matulis VE. Chevallier F. Roisnel T. Dorcet V. Mongin F. Tetrahedron 2016; 72: 2196
  • 64 Crosbie E. Kennedy AR. Mulvey RE. Robertson SD. Dalton Trans. 2012; 41: 1832
  • 65 McLellan R. Uzelac M. Kennedy AR. Hevia E. Mulvey RE. Angew. Chem. Int. Ed. 2017; 56: 9566
  • 66 Armstrong DR. Crosbie E. Hevia E. Mulvey RE. Ramsay DL. Robertson SD. Chem. Sci. 2014; 5: 3031
  • 67 Uzelac M. Kennedy AR. Hevia E. Inorg. Chem. 2017; 56: 8615
  • 68 Mulvey RE. Armstrong DR. Conway B. Crosbie E. Kennedy AR. Robertson SD. Inorg. Chem. 2011; 50: 12241
  • 69 Clegg W. Crosbie E. Dale-Black SH. Hevia E. Honeyman GW. Kennedy AR. Mulvey RE. Ramsay DL. Robertson SD. Organometallics 2015; 34: 2580
  • 70 Uzelac M. Kennedy AR. Hevia E. Mulvey RE. Angew. Chem. Int. Ed. 2016; 55: 13147
  • 71 Becker MR. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 12501
    • 72a Ketels M. Konrad DB. Karaghiosoff K. Trauner D. Knochel P. Org. Lett. 2017; 19: 1666
    • 72b Ketels M. Ziegler DS. Knochel P. Synlett 2017; 28: 2817
  • 73 Becker MR. Ganiek MA. Knochel P. Chem. Sci. 2015; 6: 6649